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Abstract:

Minimally invasive surgical (MIS) techniques, such as laparoscopic surgery (performed through small
incisions using specialized tools), are an integral part of modern medicine and the future of surgery.
Technologically advanced tools such as MIS robots are promising to replace or augment existing MIS
manual tools. MIS robots improve on manual surgery, as they can incorporate increasingly sophisticated
features such as force feedback for surgeons, automatic identification of diseased tissues, and partial
automation of surgical tasks. These features can reduce patient pain, recovery time and thus healthcare
costs by eliminating unintended damage to tissue and providing surgeons with tools to perform surgery
more effectively. Each of these new features either requires or would greatly benefit from an accurate
mathematical description of the dynamic mechanical properties for the tissues with which surgeons
interact. Dynamic tissue property quantification requires that we apply a range of forces to the tissue
and measure the resulting displacements. A device capable of collecting the necessary data to obtain an
equation relating applied force to tissue displacement for any tissue of interest designed, built, and
calibrated. An advanced signal processing and system identification algorithm (unscented Kalman
filtering), has been used to evaluate fits to collected data recursively over time. This will allow accurate
results to be maintained as the tissue properties change over time. This device has been used to collect
data from phantom tissue ad in vivo abdominal organs in pigs. In addition to being an important study
that has not been performed in the literature, the ability to carry out real-time collection and analysis of
the in vivo data could provide a significant step toward partially automating surgery.
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Introduction

Definition of the Project

The goal of my project was to develop a device that performs online model
identification of soft tissue by applying a range of known forces to the tissue with a circular
indenter, measuring the resulting tissue displacements, and analyzing the data in real time.
In addition to the phantom (artificial) tissue used in initial testing, in vivo porcine liver tests
were used, as it has been shown to have similar mechanical properties to that of human
liver . Liver tissue was used because it is an organ commonly operated on in procedures
in minimally invasive surgery (MIS) . Phase one involved developing the device and
calibrating it correctly. Phase two involved performing online model identification on
phantom tissue. Phase three involved performing online model identification of in vivo

porcine liver.

In order to achieve online (a less restrictive version of real-time) model identification the
device must be able to reliably apply a known force to the soft tissue, accurately measure
the resulting displacement of the soft tissue, and collect the force-displacement data points
for analysis on a host PC. The host PC must be capable of collecting the incoming data and
performing recursive analysis. Collectively, this system must perform these tasks with
minimal latency to be useful in real-time systems. One of the goals of this project was to
validate the performance of the individual system components and to ensure that the data

analysis consistently produces a good fit to the dataset.

There are a number of different mathematical models for soft tissue dynamics that have
been examined in literature, such as 2"d order and higher polynomials, the Kelvin-Voigt
model (f = %, + kx + bx), and the Hunt-Crossley model (f = %, + kx™ + Ax"x) . My
project also sought to evaluate three of these models with respect to their accuracy and
computational complexity. An additional goal of the project was to identify the model that
provides the best ratio of accuracy to computational complexity to validate its utility in

online model identification.
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The products of this project have the potential to benefit a number of applications in the
field of robotic surgery such as force feedback for surgeons, control algorithms for surgical

robots, increased precision of robotic surgery, and partial automation of surgical tasks.

Medical and Scientific Significance

Research in robotic surgery is leading to the incorporation of increasingly sophisticated
features such as force feedback, control algorithms, increased precision, and partial
automation of tasks, which will continue to improve modern surgery. Each of these
features would require or greatly benefit from accurate quantification of the dynamic

mechanical properties of soft tissue.

For example, because surgical robots do not currently provide force-feedback to the
surgeon and different surgical tools scale forces differently, excessive forces are often
applied during surgery, leading to unnecessary tissue damage. This is an issue particularly
with inexperienced or resident surgeons. Two potential solutions to this current problem
in robotic surgery are to implement force feedback and to implement partial automation of
grasping with a controller. In the force feedback solution, the tissue model provided by my
device would predict the forces involved throughout the act of grasping, allowing accurate

force-feedback to the surgeon. In the controller solution, the tissue model provided by my

device would be part of the control loop.|Figure 1{shows how this model could be used in a

Model Predictive Control loop.

Reference
Trajectory

Past Input/Output +
p/—p) Predicted Outputs

Model

Optimizer
Future Inputs Future Errors

I

Cost Function Constraints

Figure 1: Flow diagram of a model predictive control system
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Model predictive control would allow for incorporation of dynamic tissue models into
control loops, potentially increasing accuracy of control when surgical robots are in contact
with soft tissues during surgery. Many of these new features have the potential to reduce
the learning curve of robotic surgery to reduced medical costs to both the patient and

hospitals due to decreased recovery time and incidence of complications.

This device could be used to perform further studies to test other tissues, expanding the
library of available data. Eventually, with the appropriate approval, similar studies could be
conducted to examine the properties of human tissues. The developed models could then

be used in human surgical procedures.

The device design includes a replaceable circular end to the indenter, allowing for
additional studies to be performed on tissues with different indenter shapes and sizes.
Another potential application of this device is the study of the forces involved in needle

retraction, another area where use of partial automation could be used in robotic surgery.
Social, Ethical, and Economic Issues

Social and Ethical Issues

The most significant social issue surrounding surgical robots is their safety. Patients could
potentially be concerned that malfunction of the robots could have negative results during
surgery. Talamani et al. conducted a study on the safety and efficacy of robotic surgery in
conjunction with the Academic Robotics Group . The study concluded that, “The results
of robotic-assisted surgery compare favorably with respect to mortality, complications, and
length of stay. Robotic-assisted surgery is safe and effective and is a new reality for
American surgery. The role of these devices in surgery will expand as the technology
evolves” . In addition, machine failure never resulted in additional damage to the
patient. Therefore, while the safety of robotic surgery is constantly being improved, there is
no substantiated reason for patient concern regarding the robustness of its design. A
marketing campaign may need to take place to promote robotic surgery in the United

States.
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FDA approval would be required for new features such as the addition of grasping control
by demonstrating the safety and robustness of the control. The ethics regarding animal
testing is also a concern for this project, due to the use of live pigs. Proper IACUC protocol
were followed to uphold the ethical standards of this study. The ethical issue of human

testing also acts as a barrier to the creation of human tissue models.

Economic Issues

Unnecessary damage to tissues caused by excessive force can lead to complications for
patients . This results in increased medical expenses and increased length of hospital
stays, which can cost several thousands of dollars per person per day. Additional treatment
to correct complications adds additional expenses for both the patient and hospital.
Unfortunately, the cost of a da Vinci Surgical System, as of 2009, was about $1.2 million,
with 138,000 in annual maintenance costs . Additional training and equipment add to
the startup cost for robotic surgery facilities. This high cost acts as an obstacle to
widespread implementation of robotic surgery. While it is known that certain, more
complex, procedures cannot be performed without the aid of robotic surgery, the cost
benefit for routine minimally invasive surgery has not been proven . It is likely that
more widespread use of surgical robots and advancement of the technology will decrease

the overall cost of robotic surgery.

Incorporation of the online model identification in robotic controls would help to eliminate
damage caused by the application of excessive grasping force during surgery. Such a
system would be relatively inexpensive to implement in surgical robots control systems. By
limiting damage and complications caused during surgery, the length of hospital stays and

number of additional procedures could be reduced.

Technical Background

Tissue Mechanics
Tissue properties, in addition to being highly nonlinear, have been observed to be
viscoelastic, meaning that they have both viscous and elastic properties when they are

deformed. These viscoelastic properties make tissue properties much more difficult to
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accurately model. A material is considered to be viscoelastic if it exhibits any of the three

phenomena- hysteresis, creep, and relaxation E’

Elastic materials by definition, store all of the energy imparted in deformation. However,
due to the additional viscous properties in viscoelastic tissues, some energy is dissipated.
This leads to a phenomenon known as hysteresis, which causes the unloading portion of

the stress strain-curve to be lower than the loading portion of the curve due to the loss in

energy E' This relationship is shown in|Figure 2

Loading

Stress

Unloading

Strain

Figure 2: Hysteresis loop observed during loading and unloading of viscoelastic materials.

Elastic materials will maintain a constant strain in response to a constant stress. However,
due to the phenomenon known as creep, the strain of viscoelastic materials under a
constant stress will continue to increase over time. Eventually, a steady state value of strain
will be reached. Similarly, elastic materials will maintain a constant stress at a constant
level of strain. Due to a third phenomenon referred to as relaxation, viscoelastic materials

will experience a decrease in stress over time at a constant strain ﬂ

The net product of these effects is that the stress-stain characteristics are time dependent,
adding significantly increased complexity when modeling viscoelastic materials. There are
a number of different mathematical models of soft tissue that have been examined in
literature. These include 2nd order and higher polynomials, the Kelvin-Voigt model

(f = %o + kx + bx), and the Hunt-Crossley model (f = %, + kx™ + 1x™x) . While the
Kelvin Voigt model, a spring and damper in parallel, somewhat accurately characterizes

tissues, the nonlinear Hunt-Crossley model accounts for the energy loss during indenter-
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tissue contact. However, this increased accuracy comes at the expense of increased

computational complexity.

Model Parameter Identification

The parameters of these models can be fit using the force-displacement data generated by
my device. In batch processing this can be performed with the curve fitting utilities in
MATLAB. However, for online model identification, recursive methods must be used. One
common method of doing this is the recursive least squares method . In this project, |
have used a different technique for state estimation called a Kalman Filter. Kalman filters
allow for computationally efficient identification of nonlinear-model parameters (that is,
tissue properties) and, simultaneously, states of a dynamic system (like robot position).
This dual functionality makes Kalman filters will be more useful for incorporating online
model identification into a more complex system such as a controller. The two options for
nonlinear Kalman filtering are the Extended Kalman Filter (EKF) and the Unscented
Kalman Filter (UKF) E' The EKF approximates the state distribution using a Gaussian
random variable. The portion of the system around the current state is then approximated
as a linear function through calculation of the Jacobian matrix. Using analytical techniques,
the Gaussian random variable is then propagated through the linear approximation. In

highly nonlinear systems, this can cause large errors and corresponding degradation of

performance ﬂ

The UKF remedies this by instead choosing a set of sample points to represent the system
to capture the true nonlinear nature of the system. The Gaussian random variable is instead
propagated through this non-linear system instead of the linearized approximation, leading
to more accurate results for highly nonlinear systems E’ Also, because the UKF does not
require linear approximation of the system, no Jacobian or Hessian matrices need be
explicitly calculated, which would be computationally expensive for complex functions.
Despite the increase in performance, the EKF and UKF have the same order of
computational complexity El A UFK software package is used in this project due to the

high degree of nonlinearity observed in soft tissues.
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Literature Review

There are a number of different mathematical soft tissue models that have been examined
in literature, such as 2" order and higher polynomials, the Kelvin-Voigt model

(f = %o + kx + bx), and the Hunt-Crossley model (f = £, + kx™ + Ax™x) . Several
studies have shown that the Hunt-Crossley model is typically the most accurate in

replicating the viscoelastic properties of soft tissue because it accounts for the energy lost

during contact with the tissue |7[10]. However, it does this at the expense of computational

complexity.

The two main categories of devices that appear in literature for measuring the properties

of soft tissue are dynamic mechanical analysis and transient elastography [11)12].

Somewhat less common approaches that have been found are a torsional resonator device
and a mechano-acoustic indenter system . Previous studies in literature suggest

that use of different indenter shapes, including studies on needle insertion and retraction,

are relevant and could prove useful for applications in robotic surgery [4f15-17].

Both dynamic mechanical analysis and transient elastography have been shown to have

comparable results . The computational complexity of dynamic mechanical analysis is

generally less than that of elastography [7[12], potentially making it more suitable for real-

time applications. There have been a number of different dynamic mechanical analysis

devices in literature.

A study conducted by Carter et al. examined the estimation of tissue parameters of in vivo

tissues using a hand held indenter device . This hand held device is capable of making

force vs. displacement measurements in both ex vivo and in vivo tissue (Figure 3).
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Figure 3: Handheld indenter device
Carter et al. provides a good example of a portable device that would be capable of making
in vivo measurements. The 4.5mm tip and 5N- load cell load cell are moved using a drive
wheel and drive thread and the displacement is measured using a linear variable
differential transformer (labeled LDVT in Figure 3). Force is then measured using a 5N
load-cell. Displacement is measured relative to the reference ring and the trigger button is
used to start and stop data collection. However, this study did not perform online model
identification, instead focusing on the static properties of soft tissues. In vivo studies were
performed at very low levels of force, so this study also failed to examine model validation

at higher levels of force.

Another dynamic tissue measurement system was implemented by Yamamoto .
Yamamoto investigated the application of tissue models in teleoperated surgical systems
. In this study, real time model identification using the non-linear Hunt-Crossley tissue

model was carried out during palpitation of in vitro porcine liver and kidney, using the

apparatus shown in|Figure 4
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Figure 4: Measurement technique used by Yamamoto

Yamamoto et al. used a da Vinci® surgical instrument to apply force with a plastic disc
(attached via the instrument extension pictured on the left) and to measure displacement.
The force/torque sensor measures how much force has been applied to the tissue. In this
case, Yamamoto performed initial experiments on artificial heart tissue. It would be
difficult to use this device to make measurements of in vivo tissue because the tissue must
be placed on the force plate in order to acquire data. Similar existing designs such as by An
etal. , Schwartz et al. [17], and Tay et al. also appear to be unsuitable for in vivo

measurements, but have certain components that may help in developing my own design.

However, Yamamoto’s study did make use of both the least squares and recursive least

squares method to implement batch and online model identification.

De et al. did research to evaluate the grasping force and grasping durations that could be

safely used on porcine liver, ureter, and small bowel without causing damage . In order

to apply known forces to the tissue, a motorized endoscopic grasper was developed (Figure

5).

~Force sersors  andand surgical tool

“DC motor (in handle) A

Figure 5: CAD rendering of a motorized endoscopic grasper
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A standard surgical grasping tool was fitted with a DC motor and force sensors. The
position of the grasper jaws can be calculated using an encoder attached to the DC motor.
The force applied by the grasper was calibrated using springs of known stiffness and the
damage was quantified using a number of histological assays to measure cell death,

inflammation, and activation of the coagulation cascade. An example of visual damage

resulting from excessive force is shown in|Figure 6

Figure 6: Photograph of resulting porcine hepatic tissue response to increasing load

The arrows indicate the points at which force was applied (increases in the counter
clockwise direction). Note that the points of high stress show a significantly more damage
(indicated by dark coloration). The results indicated that there is a nonlinear response
between the applied grasping force and tissue damage. This study is significant because the
motorized endoscopic grasper device used in this study is very similar to the device
required for my project. However, concerns have been raised regarding the
appropriateness of this particular device for developing an accurate mathematical model of
the tissue . In particular, the surface area of the grasping device is poorly defined and
the cable-driven systems may produce a significant error. Cable-driven systems have
substantial friction and the cables tend to stretch slightly under load. While error produced
by these factors would not have significantly impacted the results of De’s study, they would

result in inaccurate determination of mechanical tissue properties.

Other studies, including those by Roan et al. and Rosen et al. [23] used a very similar

design for a motorized endoscopic grasper. Rosen et al. examined the mechanical
properties of a number of porcine tissues post mortem and in vivo. However, only static

(stress-strain) properties were examined. While much of the testing protocol is similar, the
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device in this work must be capable of measuring the dynamic (force-displacement)
properties of the tissue, in order to create an appropriate mathematical model for control

applications.

There are several different options for model parameter identification. Some approaches in

literature have utilizes a technique called finite element analysis to obtain tissue

parameters [14[18/|24)/25]. While finite element analysis has been shown to provide

accurate results, it is computationally expensive and is not suitable for online applications.

Recursive least squares techniques have also been examined in literature |7)(26]. Perhaps

the most attractive model identification technique is Kalman filtering; particularly
extended Kalman filters and unscented Kalman filters, which are suitable for non-linear
systems. The main advantage of a Kalman Filter is that it allows for computationally
efficient identification of model parameters (that is, tissue properties) and, simultaneously,
states of a dynamic system (like robot position). This allows the online modeling to be
easily incorporated into more complex systems such as a controller. Of the two nonlinear

varieties, studies in literature suggest that unscented Kalman filters are the most suitable

for estimation of highly nonlinear system parameters [9)27-30]. One reason for this is that

the unscented Kalman filters are less prone to error when the system is highly nonlinear,
while maintaining the same order of computational complexity of an extended Kalman

filter.

Previous Relevant Work in the Biorobotics Laboratory

During Winter Quarter 2011 another undergraduate researcher, Jack Chan, and I worked
on modifying several open source non-linear optimization packages for use in model
predictive control (MPC) systems. MPC, a controller that utilizes a model of the process
under control, has been particularly successful in fields such as chemical engineering,
where the required sampling times are seconds or minutes long. However, our supervisor,
Sina Nia Kosari (Ph.D. student in electrical engineering), sought to utilize MPC in robotic
applications, where systems have faster dynamics. This requires much faster sampling

rates in the order of milliseconds.
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Run time of the MPC algorithm had to be improved to allow the use of such sampling rates.
MPC aims to find the control input that minimizes the difference between the desired and
actual response in a given optimization horizon (time interval over which an optimization
problem is solved). The rate-limiting step of MPC is finding the input that minimizes the
system’s error in response- based on the specified model relating system input and output.
This is done using numerical optimization software packages. After compiling a list of
appropriate open source software packages, Jack and I installed HOPSPACK, NOMAD, and
ACADO and used them to solve basic optimization problems, modifying portions of the
code when necessary. We were able to achieve solution times in the millisecond time scale.
Upon completing my involvement in this project, further testing was to be done to examine
whether these solution times remained low when the complexity of the optimization

problem is increased.

Applying MPC to robotic surgery requires an accurate model of intra-abdominal tissue. My
capstone project builds on the mathematics and programming skills | have learned from
my past work and provide the model that is required to advance the lab’s application of

MPC in surgical robotics.

[ have also instrumented a Fundamentals of Laparoscopic Surgery (FLS) pegboard to
record when the operator’s left or right tool makes contact with the metal pegs, which is a
sign of poor surgical performance. Previously, when either of the tools made contact with a
metal peg, an LED powered by a small battery would light up to alert the test supervisor.
These contacts would be tallied and accounted for in the overall performance score for the
test. My improvement utilized a Phidgets microcontroller (USB powered) to record
instances of tool-peg contacts (with a time stamp and a variable to indicate whether the
right or left tool made contact) and to optionally drive a series of LEDs to alert the operator

that they have made a mistake.

The microcontroller programming skills, in addition to those that I acquired by taking EE
472 (microcomputer systems), have greatly eased the learning curve in writing the Make

Controller firmware for my project. Learned knowledge of circuits, such as the debouncing

15|Page


Chia-Ning Wang


Chia-Ning Wang



circuits used to prevent multiple hit registrations per tool-peg contact, have also proved to

be useful throughout the course of my current project.

Outstanding Technical Issues at the Onset of the Project

At the onset of the project, it was unclear what actuator would be most suitable for my
project. While voice coils seemed promising, their single quantity prices were
undetermined. Solenoids were not a viable alternative because of their high degree of
nonlinearity. Professor Hannaford proposed hard drive voice coils as a potential option, but
it was not clear at the start of the project how these would be used to create the linear

motion necessary for the device.

At the time of my proposal | was still considering several sensors for measuring tissue
displacement including linear variable displacement transformers, analogue Hall Effect
sensors, and optical encoders with linear scales. Prices, frequency responses, appropriate

linear ranges, needed to be investigated further before choosing which to use.

The overall mechanical design of the device would be very different depending on the type
of actuator and displacement sensor chosen. Therefore, at the start of the project it was
unclear what other components would be necessary to facilitate linear motion of the
indenter and coupling of the sensor to its displacement. [ knew that after choosing the
actuator and sensor, there would have to be a significant amount of time spent coming up

with a working overall design.

[t was also not clear to me at the time at the onset of the project how I would drive the
voice coil and collect data. A DAQ was a potential option, but would not be easy to
incorporate with existing systems in the Biorobotics lab. The lab also uses a custom USB
board for reading encoder values and driving various system components. However, it was
clear that writing the firmware for this device and using it to read analog values could
potentially be inconvenient. Other options included microcontrollers such as the Make

Controller and devices made by a company called Phidgets.

Since I did not know what kind of device I was going be using for data acquisition and

driving the voice colil, it was not clear how the data would be transmitted to the host PC.
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DAQs and the BRL USB board would utilize serial data transmission. However,
microcontrollers have several different options that needed to be investigated such as
Xbee, TCP, UDP, and serial data transmission. It was unclear to me at the time which would

be the most appropriate.

Regardless of the choice of device, driving the voice coil also presented a potential problem.
Outputs on the microcontroller are current limited, so cannot source the amount of current
required to drive the voice coil. I did not know how this issue was going to be resolved,
although I did know that amplification of the current provided by the microcontroller

would be required.

An additional outstanding technical issue was how tissue-indented contact would be
detected to set the zero point for displacement measurements. This is important for
accurate measurement of displacement, but because I was busy working on other design

elements, this problem had still yet to be addressed.

Another issue with that was unresolved at the time was which method was going to be
used for online data analysis. Options included recursive least squares techniques,
extended Kalman filters, and unscented Kalman filters. It was not clear which [ would use

or how they would each be implemented in my project.

Design of Tools, Devices, and Experiments

Overview of Design and Research as Proposed in BIOEN 401

In BIOEN 401, I proposed that a linear voice coil actuator |31] would be used to apply a

known force to soft tissue. A voice coil actuator was initially chosen because they are
precise and their lack of gears or cables in these devices also suggests that they will likely

have lower friction than the alternative actuating devices, which would help to maintain

predictable output values .

Previous devices, such as those used in the studies by De et al. and Rosen et al. have used

encoders to track the position of the driving motors [4}{23]. At the time of my proposal I

was still considering several sensors for measuring tissue displacement including linear
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variable displacement transformers, analogue Hall Effect sensors, and optical encoders

with linear scales . Figure 7[shows a general design layout for my proposed device.

upporting Structure

Sensor Linear Voice Coil

Actuator

Computer

\l/ ‘l’ Tissue Being Tested

A

Figure 7: Diagram of device and system design. The linear voice coil actuator would respond according
to the input current magnitude and compresses the tissue below. A sensor would measure displacement
data, which would then sent to a computer for storage and processing. The software running on the
computer would display information, store data, make calculations based on past and incoming data,
and drive the voice coil actuator. Actuator trajectory would depend on the established testing protocol
(sinusoidal force application, step force application, etc.).

Device calibration after assembly would provide the relationship between input current
and force output. Protocol for calibration would vary depending on the chosen hardware,

but I planned to use methods similar to those described in the study by Roan .

To validate device behavior, I planned to perform initial experiments on store bought meat.
Once any needed refinements had been made and a working protocol was developed, I
would perform experiments on in vitro porcine liver to determine which of a number of the
available mathematical models for soft tissue described the data most with the best ratio of
accuracy to computational cost. Once a finalized protocol was established, in vivo tests
would be performed on porcine liver through the UW surgical pig lab using online data

analysis.

Overview of Revised Design Process

Initial research on linear voice coils revealed that their cost was prohibitive, with quotes of
$900 or more when purchased commercially in single quantities. Professor Hannaford
pointed out that old hard drives are a source of rotating voice coil actuators. However,

because these voice coils are rotational and not linear, the motion must be linearized to
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perform the necessary actuation. It was decided that the best way to do this was to use a

pulley attached to the hard drive to move the tissue indenter linearly.

The resulting tissue displacement is measured using a Linear Variable Differential
Transformer (LVDT). This sensor was chosen because they have a very high resolution,

high mechanical reliability, low friction, and very little temperature or humidity sensitivity.

In order to couple the motion of the indenter, the movement of the core of the LVDT, and

the rotational motion of the hard drive actuator, the design shown in|Figure 8|illustrates the

design that I modeled in Solidworks to accomplish this.

Figure 8: Front, left, and isometric views (left, middle, and right respectively) of my revised design.

The hard drive voice coil rotates in response to input current from an h-bridge controlled
with pulse width modulation from a microcontroller. This moves the indenter upwards or
downwards to compress the tissue, which is placed on the adjustable platform. Data is
recorded on the microcontroller and sent to a host PC via network for processing and

analysis.
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Materials and Methods

Device Design, Fabrication, and Assembly

The voice coil actuator was salvaged from a Maxtor hard drive and excess case material
was cut away using a hacksaw and Dremel. The pulley, indenter, mount, platform, and base
were designed in Solidworks and then sent to Warren Tools and Development and Prunella
Machine to be made out of non-anodized aluminum. CAD drawings for all custom parts can
be found in the supplementary materials (will be made available in the coming weeks -

details on how to access will be provided once completed).

Arduino Development

All firmware files for the various calibration protocols and experimental protocols will be
made available in the supplementary materials. Rosserial, a Robotic Operating System
(ROS) package has recently been made compatible with the Arduino platform. Therefore, I
have made my device ROS compatible, so that all data collection and transmission can be

performed utilizing the powerful built-in capabilities of ROS. More information on ROS can

be found atjwww.ros.org| Instructions on how to operate my device and how to properly

utilize the developed Arduino firmware files will be provided as supplementary materials.

Position Sensor Calibration

Although the LVDT position sensor comes with a factory calibration data sheet, the
relationship between sensor output and displacement must be determined due to the fact
that the sensor core alignment with the sensor body must be verified and that the output
voltage gains have been adjusted to fit within the bounds of the Arduino analog input range

of 0 to 5V.

1mm metal disks from the salvaged Maxtor hard drive (thickness verified with a
micrometer) and 4mm 80:20 mounting brackets (thickness verified with a micrometer)
were stacked in Imm increments underneath the tool tip. This created 1mm increments in
core displacement. By recording the sensor readings at each increment, a relationship
between sensor output and core displacement can be established using a simple linear
regression. Detailed calibration instructions, necessary Matlab files, and Arduino firmware

files will be provided as supplementary materials.
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Motor Calibration

Detailed calibration instructions, necessary Matlab files, and Arduino firmware files will be
provided as supplementary materials. Note that in protocols requiring the ATI Nano17
force sensor, the force sensor was allowed to reach a steady state by warming up for

approximately half an hour to avoid sensor drift and was tared before each trial.

Force vs. Current Calibration

The first calibration performed was a calibration to relate current input to the motor to
force output of the motor. Force was measured using an ATI Nano17 force sensor
(borrowed from Lee White for the calibration). Average current through the coil was
measured by placing a 1 ohm resistor in series with the motor and then putting the voltage
over the resistor through a passive low pass filter, a differential amplifier, an absolute value
circuit, and a non-inverting amplifier. Note that the absolute value circuit is necessary
because the control of the motor is bidirectional, meaning that the sign of the voltage
reading across the resistor may be positive or negative. A rectifier is not appropriate in this
case due to the fact that the loss across the rectifier is not constant. Absolute value circuits
do not have this problem. A schematic of the device electronics will be provided as

supplementary material.

Forces from 0.2N to 3.3N were applied in a ramp pattern by linearly varying the PWM duty
cycle of the h-bridge input signals. A Matlab script was made to simultaneously read
measurements from the force sensor and the current feedback circuit readings from the
Arduino. A simple linear regression was applied to the collected data. The position of the

indenter was recorded for later use.

Force vs. Position Calibration

[t was also noticed that the force output of the motor for a given current value varies
depending on the position of the motor due to variation in the magnetic field of the
magnetic plates in the motor at the edges. In order to obtain this relationship, a constant
current was applied to the motor and a force reading was taken at various motor positions
by stacking 1mm and 4mm metal plates underneath the force sensor in order to fix the
motor at the given position. Note that each force reading was recorded as the difference

between the reading when applying the constant force and the weight of the device itself
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(.7537 N). The reason for this is that the weight of the device itself does not change with
motor position, only the force applied by the motor does. This curve can be normalized to
the output force reading at the position the initial force vs. current calibration was
performed to obtain a correction factor that can be used to account for the position of the

motor in the overall motor calibration.

Calibration Validation

In order to test the combined calibration for the motor, a sinusoidal force trajectory (sum
of 5 equally weighted sine waves of was applied to the motor in.07,.13,.35, 1.37, and .47
Hz). If the calibration is correct, the estimated force and the force measured by the force
sensor should match with a low degree of error. Note that the position of the device was
allowed to vary throughout this experiment by placing a piece of foam between the
indenter and the force sensor. Detailed calibration instructions, necessary Matlab files, and

Arduino firmware files will be provided as supplementary materials.

Variation of Measured Device Weight
Another potential concern with motor calibration is that the weight of the device had the

potential to change with motor position. This was not initially obvious, and is a subtle

point.|Figure 9|shows a close up view of the mechanism used to linearize the motion of the

device.

Figure 9: Close up view of the mechanism used to linearize the rotational motion of the voice coil
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The portion of the mechanism in the left portion of|Figure 9|(the portion mounted to the

sliding rail) always has its center of mass in the same position relative to the indenter.
However, the portion on the right (the voice coil arm and the pulley) undergoes rotation
during operation. This causes the location of its center of mass to shift towards the axis of
rotation as the motor rotates up or down from the center position. A test was performed
that was identical to the calibration experiment used to find the relationship between the
motor position and output force, except the motor was not turned on. Therefore, the weight

of the device would be measured at various motor positions.
Simulations and Initial UFK Tests

Device Dynamics
The Unscented Kalman Filter implementation provides us with a method of simultaneously

estimating the states and parameters of a system. In carrying out this analysis, it is
important to recognize that the total system dynamics will be that of both the device itself
as well as the tissue being studied. While we could have the Kalman filter perform an
estimate on the both the device and the tissue, we can take advantage of the fact that the

device properties should remain the same. Therefore, the following procedure can be used.

First, we can model the device as a mass with viscous friction term dependent on the
velocity: Fy,otor = mX + bx, where x is the position of the device. The mass of the device was
measured, meaning that estimation of both the parameter b and the states, position and
velocity, can be performed. The first step toward obtaining accurate results with our
Kalman filter implementation is to obtain accurate estimation results with simulation data.
This system was simulated in Simulink with a b value of 750 and an applied force input in
the form of a 1Hz sine wave at a sample rate of 1000Hz for 60 seconds. After altering the
Kalman filter implementation previously written by graduate student Sina Nia Kosari for
the purposes of this particular estimation problem, the Kalman filter first state covariance
matrix and noise covariance matrix were adjusted until accurate estimations of the
position (match the simulation) were produced. In theory, a low error in the estimation of

these states should lead to a low error in the estimation of the viscous friction term.
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Combined Tissue-Device Dynamics
Having identified the viscous friction term and measured the mass, a combined model for

the tissue-device system can be written. In order to do this, the equations for the dynamics
of the tissue alone must be written. The most promising existing models for soft tissue
dynamics (based on prior performance in literature) are:

a) Kelvin-Voigt: F .pniact = a + kx + bx

b) Mass-damper-spring: F.ontqct = @ + kx + bx + mx

c) Hunt-Crossley: F.ontact = @ + kx™ + Ax™x
Where x, x, and X are position, velocity, and acceleration respectively. However, the

dynamic tissue model and the dynamic device model must be combined.

In order to combine the device and tissue models, we make the assumption that the states
of the indenter surface and the tissue surface are the same. This allows us to write the
equation Fy,ot0r — F contace = mX + bx. The combined device-tissue models are:

a) Kelvin-Voigt: F0t0r = MaeviceX + (Daevice + Drissue)X + kx + a

b) Mass-damper-spring: Fyoror = (Maevice + Meissue)X + (Daevice + btissue) X + kx + a

c) Hunt-Crossley: Frotor = (Prissue + AX™)X + kx™ + a
Using these combined models in conjunction with the UKF, we can estimate the unknown
states and parameters in the above models. Since Fmotor and position (from which we can
derive acceleration and velocity), we can ensure accurate results by comparing estimated
position and velocity to the measured position and its derivative, as well as the estimated
motor force, based on the above equation with estimated values substituted in, to the
measured motor force. Position and velocity estimates should be relatively close to the
measured values, and the comparison of motor force estimate to measured motor force will

provide insight as to how well the parameterized model describes the system dynamics.

An initial simulation in Simulink was performed to ensure that the Kalman filter performed
as expected. Results are not included in the report, but they indicate that the Kalman filter
can be adjusted to obtain accurate results. All necessary C/C++ and Matlab files for the UKF

implementation and analysis of results will be provided as supplementary materials.

24 |Page



UKF Results Based on Collected Data

Device Dynamics
Once proper behavior was verified, the device applied a force to counter its weight (allows

it to be positioned), allowed to reach a stopping position, and then driven with the same
force trajectory as in the Simulink simulation, and the displacement from the initial
position and force were recorded at 126 Hz. The Unscented Kalman filter was used to
identify the b term as before. In order to test the accuracy of this estimate, we can fix the b

term and estimate the states on a new set of data.

Phantom Tissue Dynamics
Simulab complex tissue model phantom tissue (Part TSC-10) was placed underneath the

indenter. The device applied a force to counter its weight (allows it to be positioned) and
the indenter was positioned such that its surface was just in contact with the tissue surface.
Force was then applied to the tissue following an equally weighted sum of five sine waves
0f 0.7, 1.0, 2.4, 3.3, and 4.2 Hz. Position and force were recorded throughout the trial at 126

Hz. Data was analyzed utilizing the UKF with each combined device-tissue dynamic model.

In Vivo Tissue Dynamics
Due to delays in the IACUC approval process and proper calibration of the device, | have

not completed the in vivo experiments at this time. However, [ am scheduled to perform
these experiments on June 13th with the help of Dr. Thomas Lendvay (Seattle Children’s
Hospital) at the Center for Video Endoscopic Surgery at the University of Washington
Medical Center. Due to the presence of respiration in in vivo tissues, frequencies above 1 Hz
will be used in applying forces to the tissue to avoid conflict with the respiratory rates (well
under 1 Hz, especially under anesthesia). This will allow the respiration artifact in the data
to be filtered out of the signal. These data files, Kalman filter analysis, and any other
supplementary materials will be made available once the experiments are completed. It

should be noted that my capstone advisors and I have agreed to this arrangement.

Costq

Table 1|lenumerates the cost of all the items that have been purchased for the purpose of

this project.
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Table 1: Enumeration of project expenses

Unit Price Overall
Item (Dollars) Quantity Price
Measurement Specialties HR500 AC LVDT 162.00 1 162.00
Measurement Specialties HR500 AC LVDT
Mounting Block 34.00 1 34.00
M3x0.5-6H6 Connecting Rod for
Measurement Specialties HR500 AC LVDT 28.00 1 28.00
Measurement Specialties LVM110 AC
LVDT Signal Conditioning Unit 174.00 1 174.00
Texas Instruments SN754410NE 2.14 4 8.56
Custom Machined Parts from Prunella
Machine 683.00 1 683.00
Custom Machined Parts from Warren Tool
and Development 431.00 1 431.00
Solderless Breadboard 6.00 1 6.00
THK Linear Motion Guide
(RSR7WZUU+80LM) 55.00 1 55
Arduino Nano 40.00 1 40.00
Passive Circuit Components from lab
supplies 10.00 1 10.00
1 (Not paid for, for

Simulab Complex Tissue Model 75.00 | purposes of this project) 0.00
PCB Board 30.00 30.00
Project Case from Sparkfun 9.00 9.00
Parts for PCB Circuit 15.00 15.00
In Vivo Experimental Costs Undetermined

TOTAL 1685.56

[t should be noted that since the voice coil actuator used in this project was salvaged from a
non-functional hard drive, it did not cost any money to obtain. The only costs associated
with the in vivo experiments are for paying the vet techs for 2-3 hours of extra time. Since
the animals are not obtained solely for the purposes of my experiments, but rather for

surgical training in the Center for Videoendoscopic Surgery, animal costs are avoided.
Details of Design Process and Statistical Basis for Experiments

Design Process
Initial research on linear voice coils revealed that their cost was prohibitive, with quotes of

$900 or more when purchased in single quantities. Solenoids were considered as a cheaper
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alternative, but ultimately proved not to be applicable due to their high degree of non-
linearity. Professor Hannaford pointed out that old hard drives are a source of rotating

voice coil actuators. A previous study in the lab has shown that these actuators produce a

relatively linear input current to output torque ratio and of high quality |33]. However,

because these voice coils are rotational and not linear, the motion must be linearized to
perform the necessary actuation. It was decided that the best way to do this was to use a

pulley attached to the hard drive to move the tissue indenter linearly.

The resulting tissue displacement is measured using a Linear Variable Differential
Transformer (LVDT) position sensor. LVDT outputs are proportional to the position of the
core of the LVDT within the coils. This sensor was chosen because of its high resolution,

high mechanical reliability, no friction, and little temperature or humidity sensitivity.

The design in|Figure 8l|illustrates that the motion of the indenter, the movement of the LVDT

core, and the rotational motion of the hard drive actuator are coupled to enable positon
measurement. The hard drive voice coil rotates in response to input current. In this design
the LVDT core is connected via a threaded rod to a custom mounting piece, which also
coupled via short cables to the pulley. The custom piece labeled as “mount” is mounted to
the base by a THK linear motion guide (RSR7WZUU+80LM), which allows the whole unit to
move in the vertical direction. It should be noted that the indenter cap is removable,
allowing for use of different shapes, or alternate studies in surgical tasks such as needle
insertion and retraction. The tissue sits on the adjustable platform and is compressed by
the indenter. The base also has holes for mounting additional circuitry, the LVDT signal
conditioner, and a microcontroller. Any custom parts in this design were ordered local
machinists. The adjustable platform utilizes premade 80/20. CAD drawings of all custom

parts are made available in the supplementary materials.

The voice coil is controlled using an h-bridge and pulse width modulation (PWM). The h-
bridge applies a load voltage to the voice coil with up to 1A continuous current and 2A peak
current. It also has a logic input to control the application of this voltage across the motor

leads. Using PWM, this logic input can be used to vary the torque output of the voice coil.
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PWM is provided by an Arduino Nano. This microcontroller is also used for initial
preprocessing according to the calibration to record position measurements. An additional
circuit to measure the average current across the motor was constructed because motor
heating was observed to produce variation in the resistance of the voice coil, leading to a
drop in current for a given applied voltage. While this problem could be solved using a
constant current source, the least expensive solution was to add a feedback circuit that
measures average current across the motor as the PWM duty cycle is varied. The circuit

diagrams for all electronics will be provided in the supplementary materials.

Statistical Basis for Experiments

Device calibration experiments were performed using 360 (60 seconds at 6 Hz) data points
in order to ensure a high enough sample population. R? values are used to evaluate the
quality of the fit, and standard deviations of the data were taken to provide error bars.
Average and maximum errors are reported for these experiments. For validation, a

completely new data set was used to evaluate the calibration.

In the phantom tissue tests, the average errors and parameter values reported are taken as
an average of the last 1000 points in the data set. Results of the adjustments made to the
Kalman filter settings were evaluated by collecting a separate data set on the same location
on the phantom tissue under approximately the same experimental conditions. Once the
Kalman filter is performing as expected, a t-test can be used to compare the results from

trials taken in the same location.

In the In vivo tests, we are currently limited to one animal. As we are simply trying to
demonstrate that the models can be parameterized for for in vivo porcine abdominal
organs, this does not impact the statistical relevance of the results. The number of trials
will be as high as time allows in the 2-3 hour session. At least three trials will be taken in
every tested location, so that results from each data set can be compared after Kalman filter
tuning. Since the values from these trials are based on 1000 points or more each,

appropriate statistical methods, such as a t-test can be used to compare the three trials.

28| Page



Results

Gantt Chart

My original Gantt chart is shown in[Figure 10

[} Task ., TaskName - |Duration  [Start - [Finish . |Predecessors |Apr 3,11 May15,°11 [un26,11 [Aug7,'11 [5ep18,'11 |Oct30,11 |Dec11,'11 [1an22,'12 [Mar4,12 |[Apri5, 12 |Mm
Mode s[TIml[elTTsTwlsTTIm[r[T]s[w[s[T[m[r[T[s[w[sTT[m
1 Ed Make sure protocol is established for 19 days Mon5/16/11 Thu 6/9/11 —1
in vivo experiments
2 > Decide on platform for software 27 days Mon5/16/11 Tue 6/21/11 =
3 + Decide on potential medels and 15 days Mon 5/16/11  Fri6/3/11 :l
tissue properties to include in
4 + Decide on necessary protocolsand  Gdays Sat6/4/11  Frig/10/11 3
device specifications
5 + Decide on specific components and or 8 days Sat6/11/11  Tue6/21/11 =
6 s Return home to CT 9 days Thu6/9/11  Tue6/21/11 [ ]
7 =S * Software Development 78 days ‘Wed 6/22/11 Sun 10/9/11
29 = - Device Fabricati 90 days. Mon 6/6/11  Fri10/7/11 | L, o4
30 + Get shop training for device 29 days Mon 6/6/11  Thu 7/14/11 [ —
fabrication
31 + Fabricate device (assumes parts 13 days Fri7/15/11  Tue8/2/11 Ei
have arrived)
32 s calibrate device 3days wed 8/3/11  Fris/5/11 31
33 e Finalize initial software 46 days Sat 8/6/11 Fri10/7/11  -e—
components and integrate with
hardware (making changes as
necessary)
34 + Go on vacation 24 days Wed 8/24/11  Sat8/24/11 | m—
35 =S ' Inorganic Material Experiments 19 days Mon 10/10/11 Thu 11/3/11 p—y
36 e perform initial tests on inorganic m: 2 days Mon 10/10/11 Tue 10/11/11
37 > Make ajustments based on initial re 12 days Wed 10/12/11 Thu10/27/11 36
38 + Retest and make modifications as ni 5 days Fril0/28/11 Thuli/3/11 37
39 =S = In Vitro Experiments. 52 days Fri11/4/11  Mon 1/16/12
40 e Finalize in vitro testing protocol 1day Frillfa/11 Fri11/4/11 38
a1 > Test in vitro tissue 8days Mon11/7/11 Wed 11/16/11 40
42 + Make ajustments based on initial re 5 days Thull/17/11 Wed 11/23/11 41
43 > Retest and make modifications as ni 28 days Thu11/24/11 Sun1/1/12 42
44 e Finalize in vivo experiment protoco 11 days Mon1/2/12  Mon 1/16/12 ﬁ
45 al = In Vivo Experiments 45days  Tuel/17/12 Sat3/17/12 a4
46 s Do in vivo experiments 13 days Tuel1/17/12  Thu2/2/12
47 e Make changes based on initial resul 15 days Fri2/3/12 Thu2/23/12 46 qba
48 > Retest and make modifications as ni 18 days Thu2/23/12  Sat3/17/12 47
43 + Validate results from experiments 24 days Sun3/18/12  Wed4/18/12 1
and analyze data
50 + Finalize 32days Thudf19/12  Fri6/i/12 49

Figure 10: Original Gantt chart

Due to some initial misconceptions about the project and a lack of initial agreement on the
approach to be used for the mechanical design, the finalizing of the design did not occur
until much later than anticipated. Most of summer quarter was spent choosing components
and drafting designs in CAD. All the necessary parts to build the device were not obtained
until the end of fall quarter. My winter quarter progress quickened significantly as [ was
able to complete construction of the device and basic electrical design implementation
within a few weeks. Problems with the calibration procedure required additional
components to be added and the microcontroller had to be changed. This resulted in
significant delays, meaning that the calibration was not completed until the past few weeks.
In parallel I readied the Kalman filter implementation for data analysis. Again, this is much
later than my initial Gantt chart estimated. Due to the delay in the design and calibration,
the in vivo experiments have been pushed back as well. Overall, my original Gantt chartis a

very poor representation of how my project schedule went. However, I believe that I still
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managed my time quite well throughout the entire process. [ believe that the discrepancies
can be attributed to the fact that I had very little previous experience in planning such an
extensive project. This has been a valuable experience in illustrating how almost every

aspect of a project can take longer than anticipated.

Mechanical Design

The initial CAD designs were sent to Prunella Machine and Warren Tool and Development
for manufacturing. The parts returned were excellent and met the specifications extremely
well. In constructing the device, all the parts fit together as intended, with no major
modifications. The steel cables used to attach the pulley exhibited no observable stretch for
the range of forces applied by the motor. The wires to the leads of the voice coil were of

very thin gage and were given adequate slack. This prevents the wires from impacting the

forces applied by the motor. A picture of the finished device is shown in|Figure 11} A video

of the finished device in operation will be provided in the supplementary materials.

Figure 11: Finished construction of the mechanical portion of the device.

Electrical Design
The final electrical design for the device works as intended. The components include an h-
bridge circuit to drive the voice coil motor, a second order low pass filter circuit and

voltage divider to filter out some high frequency noise in the LVDT signal and bring the
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voltage into the 0-5V range of the Arduino analog inputs, the signal conditioning unit

provided with the LVDT, and a circuit to read the average current through the voice coil.

Another problem that was encountered throughout this process involved the Make
Controller 2.0, the original microcontroller used in the design. During winter quarter, the
website that houses all of the support information for the microcontroller went down
indefinitely (we think they may be going out of business). For this reason, the firmware was
transferred to an Arduino Nano 3.0 platform. This change was made relatively easy due to

the strong support community and documentation provided on the Arduino website.

[t also became clear in initial testing that the ground used for the motor power source and

the current feedback/LVDT circuit would have to be separated. This is explained by the fact
that the high current drawn by the motor is can cause the ground to be pulled up. Since this
occurs at the PWM frequency, this resulted in a significant amount of noise in the LVDT and

current readings. The ground used for each was separated to avoid this issue. The final

electrical design is shown in the picture in‘ Figure 12

Figure 12: Final electrical design components

It should be noted that a PCB design was made for the initial design using EAGLE CAD.
Unfortunately, this circuit did not include the current feedback components, and has since
been redesigned. The conversion to PCB may result in changes in the calibration, so the

PCB will be not installed until [ am finished with my experiments. Since the signals do not
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exhibit significant noise, it does not appear that there is any loss in signal integrity. A PCB
design would be much less fragile and is much better permanent option. The circuit

diagram of the electronics will be provided in the supplementary materials.

Position Sensor Calibration
The first step in the device calibration process was to verify that displacements in the LVDT

core resulted in linear changes in the output voltage, and to determine the relationship

between the output voltage and the displacement of the core (Figure 13).
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Figure 13: 1mm and 4mm plates (verified with a micrometer) were stacked underneath the device to
produce precise displacements from 0 to 16 mm. The LVDT output was measured at each of these
points and plotted against the displacement values. A linear fit was applied, resulting in R* = 1. Error bars
in the plot represent one standard deviation in the sensor output reading in each direction.

These results indicate that then sensor behavior is reliable.

Motor Calibration
Force readings were taken at various current values in order to obtain a relationship

between motor output force and average current. The results from this experiment are

shown in|Figure 14
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Force vs. Current Calibration

Calibration of Farce vs Current(Fe2 = 9987)
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Figure 14: The duty cycle of the h-bridge logic input was varied linearly in order to travel between
minimum (upward force of the motor approximately equal to weight of device) and maximum
downward force. Current values are negative if the motor is lifting the device upwards to counter its
weight. A linear fit was applied, yielding a R value of 0.9987.

The high R? value indicates that this is a good fit. The position of the motor was recorded

during this experiment for use in subsequent motor calibration steps.

Force vs. Position Calibration
The result of this experiment are shown|Figure15

Moator Force Output vs. Motar Position (FE2 = 4773)
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Fit
Data
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Measured Force (M)

07r
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LYDT Cutput (V)

Figurel5: The motor was set to a constant duty cycle and allowed to reach a steady current value. Using
the force sensor, the force was measured at various motor positions. The weight of the device was then
subtracted from the total force (as this does not change significantly with motor position). A quadratic
fit was applied to the adjusted force vs. LVDT output data resulting in R? = 0.9773. Error bars represent
one standard deviation in each direction.
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The high R? value obtained using a quadratic fit implies that the fits the data well. However,
there is a reasonable amount of noise in the data. Unfortunately, this appears to be
variation in the force sensor reading. While the differences between the points here are
statistically significant, a lower level of noise would be desirable. A better force sensor or
perhaps a data collection setup that allows for higher sampling rates, and thus filtering,

would potentially help to reduce noise.

Variation of Measured Device Weight
The experiment demonstrated no statistically significant difference in the readings at any

of the motor positions. One possible reason for this is that the weight of the pulley and arm
are very low with respect to the total mass and that their center of mass is likely close to
the rotational axis of the voice coil. Due to the fact that the changes in weight are likely very

small, the noise in the force sensor readings could mask some very small differences.

Motor Calibration Validation

The following two sets of results in|Figure 16[and|Figure 17 were obtained by performing

this experiment in the upper and lower range of the motor respectively (ensures that the

entire path of the motor is tested).

Calibration Walidation
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Figure 16: Results from the calibration experiment in the upper range of motor position. Note that the
forces were applied in a sinusoidal trajectory with equally weighted components at 0.07, 0.13, 0.35,
1.37,and 0.47 Hz
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The mean difference between the estimated force and the measured force is 0.034 N with a
standard deviation of 0.028 N. The maximum error observed was 0.17 N in this
experiment. Due to limitations in the data collection setup that collects data from the force
sensor and the Arduino, a sampling rate of 7 Hz is used. The current setup is in Matlab, and

may need to be translated to C in the future to obtain faster sampling rates.

Calibration Validation
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Figure 17: Results from the calibration experiment in the lower range of motor position. Note that the
forces were applied in a sinusoidal trajectory with equally weighted components at 0.07, 0.13, 0.35,
1.37,and 0.47 Hz

As in the upper half of the trajectory, the average magnitude of the error is low: 0.0359 N

with a standard deviation of 0.0322 N. The maximum error observed was 0.22 N.
Simulations and Initial UKF Tests

Device Dynamics

The results of this analysis are shown in Figures|Figure 18/ Figure 19/ and|Figure 20
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Figure 18: Estimate of the position and the actual position in the simulation data

The position estimation has an average error magnitude of 1.43e-6. This low error

indicates that the estimate is very accurate for position.
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Figure 19: Estimate of velocity and actual velocity in the simulation

The average magnitude of the error after the first 10 seconds is 5.17e-4. It should also be
noted that there is a spike in the estimation towards the beginning of the analysis. These
results indicate that there may need to be further adjustments made to the covariance

matrix to obtain more accurate results.
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Figure 20: Estimation of the viscous friction term b and the simulation value

The steady state error in the estimation is 23.64, which represents a 3.15% error. While
this is relatively low, it is possible that the analysis can be adjusted to obtain more accurate
results. Another potential cause of this error is a lack of excitation in the system, which

could be addressed by using an input force that is the sum of several different frequencies.
UKF Results Based on Collected Data

Device Dynamics

While data has been collected to quantify the device dynamics, the velocity state estimate
still retains a large amount of error. Since this will be used to calculate the viscous friction
term in the device dynamic model, it cannot be assumed that the friction term is correct
until the velocity estimate is correct. Further efforts will be needed to refine the Kalman
filter analysis before the device dynamics can be accurately quantified. An arbitrary value
of 0.01 has been assigned to this term in the subsequent results, introducing a constant

error term into b2 terms in the parameters identified in the models below.
Phantom Tissue Dynamics

Kelvin-Voight:
After tuning the Kalman filter based on the first data set, it was determined that the mean

error in the position and velocity estimates were 0.13% and 450.3% respectively.

Analyzing the second data set with these settings yielded mean error in the position and
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velocity estimates of 0.14% and 479% respectively. The estimated motor force for the two

data sets is plotted against the measured values in|Figure 21 (and|Figure 22
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Figure 21: Plot of estimated and measured motor force for first data set
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Figure 22: Plot of estimated and measured motor force for second data set

The mean error between the estimated and measured motor force is 3.92% and 3.86% in

the first and second data sets respectively.

The parameters identified in these models are k = 230.11 and b2 = 24.01 in the first data
set and k =230.556 and b2 = 24.02 in the second data set.
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Mass-Damper-Spring

After tuning the Kalman filter based on the first data set, it was determined that the mean

error in the position and velocity estimates were 9.8E-4% and 363.7% respectively.

Analyzing the second data set with these settings yielded mean error in the position and

velocity estimates of 0.11% and 243.0% respectively. The estimated motor force for the

two data sets is plotted against the measured values in|Figure 23and|Figure 24
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Figure 23: Plot of estimated and measured motor force for first data set

Figure 24:
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Plot of estimated and measured motor force for second data set
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The mean error between the estimated and measured motor force is 20.19% and 19.91%

in the first and second data sets respectively.

The parameters identified in these models are m2 = 3.0, k = 229.1, and b2 = 64.95 in the
first data setand m2 = 3.0, k = 239.85, and b2 = 64.93 in the second data set.

Hunt Crossley
The Hunt Crossley model proved to be particularly sensitive to adjustments in the Kalman

filter settings, and often fails to come to a solution entirely. Thus far, this model has not
been able to be adjusted to provide state or motor force estimates that are at all close to the
measured results. Therefore, the results will not be included here. Further adjustments will

be needed to use this model and results will be provided as supplementary materials.

In Vivo Tissue Dynamics

Due to delays in the IACUC approval process and proper calibration of the device, | have
not completed the in vivo experiments at this time. However, I am scheduled to perform
these experiments on June 13t with the help of Dr. Thomas Lendvay (Seattle Children’s
Hospital) at the Center for Video Endoscopic Surgery at the University of Washington
Medical Center. These data files, Kalman filter analysis, and any other supplementary
materials will be made available once the experiments are completed. It should be noted

that my capstone advisors and [ have agreed to this arrangement.

Experimental/Design Decisions Made by the Student During Project
Throughout the course of the project there were several decisions that [ made regarding

experiments or design considerations.

Throughout the initial design phase, I chose to make several revisions to my initial design
based on the cost of various parts and quotes on the custom parts that [ had made for my
project. | made the decision that I wanted to minimize use of any expensive components,

while maintaining the robustness of the design.

During the initial calibration process, it became clear that the Make Controller 2.0
microcontroller, while otherwise robust, was not able to perform some of the floating point

calculations required for calibration. In addition, the website that houses all of the support
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information for the microcontroller has been down since winter quarter (we think they
may be going out of business). For this reason, [ made the decision to transfer the firmware
to an Arduino Nano 3.0 platform. This platform will also make it very easy for future users

of the device to alter the firmware due to the open source nature of Arduino and ROS.

In addition, it also became clear that the heating of the voice coil during operation was
causing the calibration to become inaccurate due to changing resistance in the coil. | made

the decision to add a current feedback circuit in order to improve the calibration.

Initially, I planned to automate contact detection with the tissue. This proved to be rather
difficult to employ using only the position readings. | made the decision to instead provide
an initial step in each experiment where the device is held in gravity compensated mode
(force of the motor counters the weight of the device). The user can then set the position of
the device such that it is just in contact with the tissue. The device is held in this position

until the experiment is initiated, at which time the initial position is recorded for reference.

Lastly, my original idea was to enable a user to command forces to the motor during an

experiment using a PID controller. However, this is not necessary for my experiments, and
will only be used in future work. I have made the decision to omit this feature for the time
being. Using a constant current power source is another potential option that would likely

eliminate the need for PID control.
Analysis and Conclusions

Position Sensor Calibration

The results from the LVDT calibration indicate that there is a reliable relationship between
its output voltage and the position of the device. The device was designed to place the core
of the LVDT exactly in the center of the coil, and to ensure that the coil remained in the
linear range of the device. Based on these results, it is clear that placement of the core
within the coil is sufficiently accurate to maintain the linear behavior of the sensor.
Furthermore, the low standard deviation of the sensor output measurements indicate that

the reading is reliable and relatively noise free.
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Motor Calibration

Results from the current to force calibration indicate that there is a strong linear
relationship between the output force and the current through the device, as indicated by
the R2 value of 0.9987. The data show that there is some noise in the force measurement.

Future efforts could seek to reduce noise to obtain lower bounds of error on the device.

The noise in the force sensor readings also poses a number of complications in the other
steps of motor calibration. For example, this noise is apparent in the calibration of variation
in the motor output force with position of the motor. The error bars in this calibration
experiment overlap in many case (but not in others). Ideally, this noise would be reduced

somewhat to reduce the variation in these measurements

Motor Calibration and Validation

Initial results for the overall calibration are promising. Average error is quite low and when
calculated as a percentage error in estimated force represents an average of 3.5% and 3.7%
in the upper and lower ranges respectively. One potential concern with this experiment is
that when the device is in motion, the contact force may not be exactly equal the contact
force. This potentially introduces some additional error into the results of this experiment.
Given the noise in the force sensor readings, it is difficult to tell whether this error is a
result of error in the calibration, or simply a product of the noise. Due to the nature of this
experiment, the force measurements are single readings. In other experiments the noise in
the force readings, assuming it is destructive, should not play a significant role because it

will average out given the high number of samples.
Simulations and Initial UKF Tests

Device Dynamics
[nitial simulation results with the Kalman filter are promising. The 3.15% error in the

viscous friction parameter estimation also supports this claim. However, despite the
relatively small errors, overall performance thus far is good. Another potential cause of the
error is a lack of sufficient excitation in the system. A solution to this problem would be to

use a force input that is the sum of three sinusoids of different frequencies.
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UKF Results Based on Collected Data

Device Dynamics
While the simulation obtains relatively accurate results, usable results have not yet been

obtained using the collected data. There are a number of items that should be examined as
potential problems. The forces used in these experiments are very close to zero and of low
magnitude. It is possible that the small non-linearity in the initial calibration data has
resulted in overestimation and thus high percent error of the motor force in this range and
magnitude. It is possible that a piecewise calibration curve could be used to account for the
small non-linearity. It is also possible that the model is simply not an accurate
representation of the device dynamics. An arbitrary value of 0.01 has been assigned to this
term in the subsequent results, introducing a constant error term into b2 terms in the
parameters identified in the models below. Further work should be done to determine if
inclusion of factors such as static friction could improve the results. Lastly, as in the
phantom tissue analysis, it is possible that the Kalman filter simply needs to be further

adjusted. See the section below for suggestions on how this issue might be resolved.

Phantom Tissue Analysis
Error in the estimated motor force for each of the models examined is relatively low.

However, due to the high amount of error in the velocity estimates, the performance of
each model cannot be accurately evaluated. Error in the velocity propagates error into the
parameter estimates, and this into the estimated motor force. Further refinements to the
Kalman filter analysis will be needed before the results of these experiments can be
commented on. One potential approach would be to use an implementation of the Robins-
Monro algorithm, which can use stochastic variations to adaptively determine the
appropriate covariance matrix of the Kalman filter. Similar problems have been observed
in past work with the UKF implementation, so it is likely that they can be resolved given
further refinement. Accurate viscous friction estimation for the device will also have to be

ensured in order to accurately determine the b2 terms in each of the models.

In Vivo Tissue Dynamics
Due to delays in the IACUC approval process and proper calibration of the device, | have

not completed the in vivo experiments at this time. However, I am scheduled to perform

these experiments on June 13t with the help of Dr. Thomas Lendvay (Seattle Children’s
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Hospital) at the Center for Video Endoscopic Surgery at the University of Washington
Medical Center. These data files, Kalman filter analysis, and any other supplementary
materials will be made available once the experiments are completed. It should be noted

that my capstone advisors and I have agreed to this arrangement.

Suggestions for Future Work

There are a number of additions to this device that should be implemented in the future.
Since the weight of the device is included in the calibration, the device is currently limited
to the vertical pose. A potential add-on that could enable the device to be used in any
orientation would be an accelerometer to sense gravity. A potential improvement to the
calibration procedure would be to write the program that collects the force sensor data in C

to enable faster sampling rates.

By its conclusion, this project will have employed online mechanical property estimation
on in vivo tissues. Since the utility of this device is so general, there are many potential
applications that should be explored. As discussed in the project motivation, the
mechanical properties estimated by this device could potentially be utilized in model-
predictive control of surgical grasping. Graduate student Sina Nia Kosari will use this
device to perform initial tests on whether or not this is possible, and what benefits it
provides. Simultaneous control of the force/position of the device and state and parameter
estimation will require adjustment to the Kalman filter analysis. Also, as this device is only
for proof of concept, the features of this device, or something similar, would have to be

incorporated into a surgical tool in order to reach the clinic.

Due to the fact that the tool tip of the indenter is interchangeable, studies can be done with
indenters of various sizes and shapes. There has been research to suggest that the shape of
surgical tools can influence the amount of damage that they cause, and this device could
allow for further research in this area. This data would potentially be useful in partial

automation of surgery and could be easily obtained.

Lastly, there is a potential application of this device in haptic enabled devices. Current
research in my laboratory is focusing on haptic enabled equipment for astronauts that

compensate for the mechanical impedance of the interface point with the human body. This
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application would require knowledge of the dynamic mechanical properties. Using this
device, one could ascertain the mechanical properties, enabling impedance compensation

for these haptic devices.

Additional Research Projects and Presentations

Haptic Glove Project

[ had the opportunity to take EE 589: Haptic Enabled Devices, which was taught by my
graduate student mentor, Sina Nia Kosari. As our final project, my partners Oliver and
Marcin and I developed a haptic enabled glove that interfaces with a Microsoft Kinect and
the musical synthesis program SuperCollider for controlling sound effects. A picture of the

initial prototype of the glove is shown in

Figure 25: Haptic glove with flex resistors, vibration motors, an Arduino, and Bluetooth for interfacing
with a Microsoft Kinect and the music synthesis program SuperCollider.

This project is now being expanded as a larger haptic interface research effort. Eventually
we hope that the glove will find general utility in a number of Microsoft Kinect interfaced
haptics projects. The video of our initial glove implementation will be provided as
supplementary material. A second version of this glove has been developed as part of
Professor Chizeck’s EE 449 senior design course in the Department of Electrical

Engineering for conveying vibrational feedback when in contact with virtual objects.

Undergraduate Research Symposium Presentation
This year I had the opportunity to present my research at the Undergraduate Research
Symposium. Thank you to everyone in the BRL for their feedback on my practice sessions. I

will make the PowerPoint presentation available in as part of the supplementary materials.
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