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Abstract 

Multi-nucleotide variants (MNVs), defined as two or more nearby variants existing on the 

same haplotype in an individual, are a clinically and biologically important class of genetic 

variation. However, existing tools for variant interpretation typically do not accurately classify 

MNVs, and understanding of their mutational origins remains limited. Here, we systematically 

survey MNVs in 125,748 whole exomes and 15,708 whole genomes from the Genome 

Aggregation Database (gnomAD). We identify 1,996,125 MNVs across the genome with 

constituent variants falling within 2 bp distance of one another, of which 31,510 exist within the 

same codon, including 405 predicted to result in gain of a nonsense mutation, 1,818 predicted 

to rescue a nonsense mutation event that would otherwise be caused by one of the constituent 

variants, and 16,481 additional variants predicted to alter protein sequences. We show that the 

distribution of MNVs is highly non-uniform across the genome, and that this non-uniformity can 

be largely explained by a variety of known mutational mechanisms, such as CpG deamination, 

replication error by polymerase zeta, or polymerase slippage at repeat junctions. We also 

provide an estimate of the dinucleotide mutation rate caused by polymerase zeta. Finally, we 

show that differential CpG methylation drives MNV differences across functional categories. Our 

results demonstrate the importance of incorporating haplotype-aware annotation for accurate 

functional interpretation of genetic variation, and refine our understanding of genome-wide 

mutational mechanisms of MNVs. 
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Introduction 

Multi-nucleotide variants (MNVs) are defined as clusters of two or more nearby variants 

existing on the same haplotype in an individual1,2 (Fig. 1a). When variants in an MNV are found 

within the same codon, the overall impact may differ from the functional consequences of the 

individual variants3. For instance, the two variants depicted in Fig. 1b are each predicted 

individually to have missense consequences, but in combination result in a nonsense variant. 

Such cases, which would be missed by virtually all existing tools for clinical variant annotation, 

can result both in missed diagnoses and false positive pathogenic candidates in analyses of 

families affected by genetic diseases1,2. 

MNV identification tools4-8 have been applied to databases of human genetic variation at 

varying scales, including 1000 Genomes9 Phase 3 (2,504 individuals with high coverage exome 

and low coverage genome sequencing data), and the Exome Aggregation Consortium1 (60,706 

individuals with high coverage exome data). Together, these analyses identified over 10,000 

MNVs altering protein sequences, demonstrating the pervasive nature of MNV annotation in 

population level data. Additionally, analysis of the 1000 Genomes dataset highlighted 

differences in the frequencies of MNVs depending on sequence context10. In combination with 

yeast experiments11-13, biological mechanisms that account for the enrichment of specific types 

of MNVs, such as DNA replication error by polymerase zeta, have been suggested. 

Studies of newly occurring (de novo) MNVs have also been performed using trio 

datasets2,14-16; analysis of 283 trios with whole genome sequence data16 confirmed that MNV 

events occur much more frequently than expected by random chance. By focusing on non-

coding regions, this study also highlighted potentially different mechanisms that dominate MNV 

generation depending on the genomic region and the distance between the two constitutive 

variants. As part of the Deciphering Developmental Disorders (DDD) study17, Kaplanis et. al.2 

analyzed exome sequence data from over 6,000 trios to quantify the pathogenic impact of 

MNVs in developmental disorders, showing that such variants are substantially more likely to be 

deleterious than SNVs and further clarifying the mutational mechanisms that generate them. 

These analyses also have provided estimates of the germline MNV rate per generation, falling 

into a consistent range of 1-3% of the SNV rate. Although these studies have provided valuable 

information about the mutational origins and functional impact of MNVs, to date there has been 

no analysis that investigated MNVs across the entire genome (including non-coding regions) in 

many thousands of deeply sequenced individuals, limiting our understanding of the genome-

wide profile and complete frequency distribution of this class of variation. 
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  Here, we present the analysis of the largest collection of MNVs assembled to date, along 

with clinical interpretation of MNVs from over 6,000 sequenced individuals from rare disease 

families. We also provide gene-level statistics on MNVs and describe the distribution of MNVs 

by functional consequence and by gene-level constraint. Finally, to enhance our understanding 

of MNV mechanisms, we examine the distributions of MNVs stratified by more than ten different 

functional annotations across the human genome, as well as estimates of the genome-wide per-

base frequencies of the dominant mutational processes generating MNVs. 

a.            b. 

 

 

c. 

 
Figure 1. Definition and an example of MNVs, and validation of phasing sensitivity 

a, Definition and an example of an MNV. In this manuscript, an MNV is defined as two or more 

nearby variants existing on the same haplotype in the same individual. b, Impact of MNVs in 

coding regions. The amino acid change caused by an MNV can be different from either of the 

individual single nucleotide variants, which creates the potential for missannotation of the 

functional consequence of variants. c, Graphical overview of the analysis of phasing sensitivity 

and specificity using trio samples from our gnomAD callset. We identified all heterozygous 

variant pairs that pass quality control (Methods) and compared the phase information assigned 

by read based phasing with that of trio based phasing.  
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Results 

 

 

Read-based phasing for identification of MNVs 

 Identification of MNVs requires the constituent variants to be properly phased - that is, to 

be identified accurately as either both occurring on the same haplotype (in cis) or on two 

different haplotypes (in trans). Phasing can be performed following three broad strategies: read-

based phasing18, which assesses whether nearby variants co-segregate on the same reads in 

DNA sequencing data; family-based phasing19, which assesses whether pairs of variants are 

co-inherited within families; and population-based phasing20, which leverages haplotype sharing 

between members of a large genotyped population to make a statistical inference of phase. 

Read-based phasing is particularly effective for pairs of nearby variants, making it suitable for 

the analysis of MNVs. 

For this project, we generated read-based phasing results for variants in the Genome 

Aggregation Database (gnomAD) v2.1 callset using GATK HaplotypeCaller21, yielding 125,748 

human whole exomes and 15,708 genomes with local phase information; the properties of this 

callset are described in detail in an accompanying manuscript22. To assess phasing accuracy, 

we used 5,785 family trios with exome sequencing data and 635 family trios with whole genome 

sequencing data that largely overlapped with the gnomAD 2.1 release data. We calculated the 

phasing sensitivity, defined as the fraction of heterozygous variant pairs that have read-based 

phase information assigned for both variants, and found that it was 85.2% for adjacent 

heterozygous variant pairs, reflecting the stringent haplotype-calling criteria of GATK21 

(Supplementary Table 1). We used Phase-By-Transmission (PBT)19, a family-based phasing 

method (Fig. 1c), to assess our phasing specificity, and found that over 99.8% of the MNVs 

identified with read-based phasing were consistent with the PBT trio-based phasing. The 

sensitivity and specificity of our read-based phasing remained high even when the two variants 

of the MNV were 10 bp apart (80.6% and 99.4%; Supplementary Fig. 1 and Supplementary 

Table 1). These results demonstrate high specificity and sensitivity for the detection of MNV 

events across the genome.  

 

Functional impact of MNVs 

 In order to provide an overview of the functional impact of MNVs (Fig. 1b), we examined 

all phased high-quality SNV pairs (i.e. SNV pairs that pass stringent filtering criteria; see 

Methods) within 2 bp distance of each other across the 125,748 exome-sequenced individuals 
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from our gnomAD 2.1 dataset, resulting in the discovery of 31,510 MNVs exist within the same 

codon. When the two variants comprising the MNV were considered together, the resulting 

functional impact on the protein differed from the independent impacts of the individual variants 

in nearly 60% of cases (18,714 MNVs; Fig 2a and Supplementary File 1). Among the differing 

annotations of functional consequence, 405 were “gained” nonsense (neither individual SNV 

was a nonsense mutation, but the resulting MNV is), and 1,818 were “rescued” nonsense (at 

least one of the two individual SNVs would create a nonsense mutation, but the resulting MNV 

does not). Such categories of MNVs have a major impact on variant interpretation, and thus are 

critical for accurate variant annotation. There was an average of 55.2 variants with altered 

functional interpretation (including 0.062 gained and 4.42 rescued nonsense) due to MNVs per 

individual.  

 To understand the overall impact of correctly annotating the functional consequence of 

MNVs in a population-level dataset, we counted the number of gained/rescued nonsense 

mutations per gene in gnomAD (Fig. 2b, and Supplementary File 1). For rescued nonsense 

mutations we found 1,532 sites that are rescued in all the individuals with the component 

variants. A total of 1,594 genes carried gained or rescued nonsense mutations within our 

dataset, including 41 genes that are disease-relevant (reported by OMIM23 or annotated as 

haploinsufficient by Clingen24,25). In addition, the proportion of rescued nonsense mutations of 

falling in predicted loss-of-function (pLoF) constrained genes (genes with a significant depletion 

of pLoFs compared to an expectation based on a mutational model1,26, defined as LOEUF22 

decile < 20%) was higher (proportion=0.217) when compared to all the other classes of MNVs 

(proportion=0.191; Fisher’s exact test, p = 0.0390; Fig 2c and Supplementary Fig. 2). 

Conversely, gained nonsense mutations are depleted among constrained genes 

(proportion=0.0623) compared to all other classes of MNVs (Fisher’s exact test, p = 1.40 ×

10−11). These results suggest a significant enrichment of LoF annotation errors in the absence 

of MNV annotation.  

 In order to understand the impact of these variants in clinical applications, we also 

annotated MNVs in 6,072 sequenced individuals from rare disease families, including 4,275 

case samples. This resulted in 16 gained nonsense mutations and 110 changed missense 

MNVs with high CADD27 scores and low frequencies in gnomAD (CADD>20 and <10 individuals 

in gnomAD; Supplementary File 2). However, after close manual curation, none of the 

corresponding MNVs were definitively causal variants for the diseases affecting the family, 

suggesting that MNVs contribute to only a small fraction of total rare disease diagnoses, in line 

with expectations based on their relative rarity and previous results2.  
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a. 

 

  

b.             c. 

 
Figure 2. Functional impact of MNVs 

a, The number of MNVs in the gnomAD exome dataset, per MNV category. Of the 1,818 

rescued nonsense mutations, 1,532 are rescued in all individuals that harbor the original 

nonsense mutation and are used for the analysis in (b) and (c). Gained and rescued nonsense 

MNVs were further filtered to high-confidence (HC) pLoF in (b) and (c). b, The number of 

gained/rescued nonsense mutations per gene, and examples of disease-associated genes with 

2 or more gained/rescued nonsense mutations. c, The fraction of each category of MNV found 

in a set of 3,941 constrained genes (top two deciles of constraint22).  

 

Genome-wide mutational mechanisms of MNVs 

 We next turned our attention to understanding the mutational mechanisms underlying 

the origins of MNVs genome-wide, focusing on whole genome sequence data from 15,708 
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individuals in the gnomAD v2.1 callset. We considered pairs of high-quality variants in 

autosomes separated by up to 10 bp, resulting in the assembly of a catalogue of 6,261,326 

MNVs including 1,996,125 MNVs within 2 bp distance - an order-of-magnitude increase in size 

over previous collections.  

We considered three established major categories of mutational origins of MNVs with 

constituent SNVs falling next to each other (“adjacent” MNVs. Fig. 3a), each of which is biased 

towards certain MNV patterns: (1) combinations of distinct single nucleotide mutation events; (2) 

replication errors by error-prone polymerase zeta; and (3) polymerase slippage events at repeat 

junctions. MNVs in the first category are a product of two or more SNVs, which typically occur in 

different generations and may thus have different allele frequencies. We expect to see an 

enrichment of CpG transition compared to non-CpG transversion for this class, due to the 

underlying difference of SNV mutation rate28-30. The second category, replication error 

introduced by DNA polymerase zeta (pol-zeta), is a well known class of replication error that 

introduces MNVs. Previous studies10,11-13,31 have shown that pol-zeta is prone to specific types 

of replication error, mainly TC->AA, GC->AA, and their reverse complements, with experimental 

evidence that these MNV patterns occur in a single generation; thus, the constituent SNVs will 

typically have the same allele frequencies. The third category, replication slippage, is another 

known mode of DNA replication error32-34. This process is especially frequent at sites with 

repetitive sequence context; previous studies35-37 have shown that the insertion and deletion 

(indel) rate can be up to 106 times higher than the SNV mutation rate at these sites. As shown in 

Fig. 3a, the combination of an insertion and then a deletion of 2 base pairs can result in an 

MNV. 

We observed the signature of each of these MNV mechanisms in our dataset. First, we 

calculated the number of MNVs for each MNV pattern (Fig. 3b) and observed that the most 

frequent MNV pattern is CA->TG substitutions, which are likely to occur as a combination of an 

A->G transition, followed by a high mutation rate C->T CpG transition. On the other hand, the 

least frequent MNV pattern is TA->GC substitutions, which occur as a combination of two non-

CpG transversions. The 268.5-fold difference (275,240 versus 1,025) of the frequency of MNVs 

between these two patterns is comparable to the theoretical ratio calculated based on the 

mutation rate of the component SNVs (471.0-fold), and the overall correlation between the 

theoretical and observed frequency of each MNV pattern was strong (Pearson correlation 

r=0.82 with p=2.4 × 10−4 in log space; Supplementary Fig. 3).  

To investigate the extent of pol-zeta signature, we calculated the number of MNVs in 

which the gnomAD allele counts of the constitutive single nucleotide variants are equal 
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(following previous methodology2), and observed that these “one-step” MNVs are significantly 

enriched in MNV patterns matching the pol-zeta signature (90.8% for GA->TT, and 80.5% for 

GC->AA, compared to 40.7% overall; Fisher’s exact test p< 10−100; Fig. 3c).  

Finally, in order to capture polymerase slippage events, we calculated the fraction of 

MNVs in repetitive contexts per MNV pattern (Fig. 3d). For the MNV patterns AA->TT and AA-

>CC, more than 50% of all the MNVs observed were in repetitive contexts. The fractions of the 

MNV patterns AT->TA and TA->AT in repetitive contexts were also high, exceeding 30% 

(Fisher’s exact test p< 10−100 compared to the 9.25% across all patterns). For all MNV patterns 

in repeat contexts, we see a significant excess of MNVs compared to the expected number 

based on a model that assumes MNVs are simple combination of two SNV events 

(Supplementary Fig. 3). These observations support the role of replication slippage as one of 

the major drivers of MNVs. Additionally, we did not see a correlation between the frequency of 

one-step MNVs and the frequency of MNVs in repetitive contexts (the latter was 1.79 fold higher 

for AA->TT and AA->CC, 0.53 fold lower for AT->TA and TA->AT) for the MNV patterns in the 

third category, suggesting that multiple slippage events leading to MNV generation can take 

place either as a single event (i.e. in single generation) or multiple events (i.e. in different 

generation), or even recurrently. 
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b.             c. 

 
d. 

 
 

Figure 3. Mutational origins of MNVs 

a, Three major categories of the mutational origin of MNVs. (Left) A combination of single 

nucleotide mutational events. Since the baseline global mutation rate is highly different between 

transversions and CpG and non-CpG transitions, even a simple combination of single 

nucleotide mutational events could result in a highly skewed distribution of MNVs. (Center) One 

step mutation caused by error prone DNA polymerases. For this class of MNVs, since the two 

mutations occur at once during DNA replication, the allele frequency of the two constituent 

SNVs of the MNV is more likely to be equal. (Right) Polymerase slippage at repeat junctions. 

Mutation rates are highly elevated in repeat regions, and are therefore likely to cause various 

complex patterns of mutations, occasionally resulting in MNVs. b, The log-scaled number of 

MNVs per substitution pattern. c, The fraction of one-step MNVs per substitution pattern. Error 

bars represent standard error of the mean. d, The fraction of MNVs that are in repetitive 

contexts, and bits representation38 of sequence contexts. MM->NN type MNVs, especially AA-
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>TT, are more likely to fall in repetitive sequence contexts than other MNV signatures. Error 

bars represent standard error of the mean. Colors in the bars in (b) to (d) represents the 

predicted major mechanism of MNVs for each substitution pattern. 

 

Estimation of global mutation rate of MNVs 

 In order to compare the frequency of three different mechanisms, we quantified the 

contribution of two single nucleotide variation events vs other replication error modes, such as 

pol-zeta errors or replication slippage, using a simple probabilistic model. Specifically, focusing 

on adjacent MNVs, we assigned the MNV frequency for each MNV pattern to be the sum of the 

probability of two SNV events (P) and the probability of other replication error factors (Q), and 

estimated the Q term. In other words, we estimated the divergence of the observed number of 

MNV sites from the number expected by a simple SNV mutation model (see methods). The 

resulting estimated proportion of two SNV events and other replication error events is described 

in Fig. 4a.  

As expected, the proportion differs substantially from one MNV pattern to another. For 

example, while 90.1% of CA->TG MNVs appear to be caused by combinations of simple SNV 

events, the corresponding proportion is 5.42% for GA->TT, 17.8% for GC->AA and 6.36% for 

AA->TT MNVs. We presume that the lower proportion of two simple SNV events is mainly due 

to pol-zeta errors for GA->TT and GC->AA, and polymerase slippage for the AA->TT. Since 

85% of the overall MNVs were classified as either SNV combination, repeat context, or pol-zeta 

error at GA->TT or GC->AA, our analysis suggests that these three major categories explain a 

substantial fraction of MNV events genome-wide, although some possible additional 

mechanisms with smaller frequencies might exist. These calculations also allow us to estimate 

the genome-wide mutation rate of MNVs caused by pol-zeta: 1.32 × 10−10per 2 bp per 

generation for GA->TT, and 3.35 × 10−10 for GC->AA. Given that there are roughly 1.68 ×

109GA pairs and 1.20 × 109GC pairs in the reference human genome, we estimate there are on 

average 0.22 GA->TT and 0.40 GC->AA mutations per generation (Supplementary File 3).  

We also explored the potential mutational mechanisms for MNVs with a greater distance 

between the component variants (Supplementary Fig. 4,5 and 6), and observed signatures of 

non-independence of mutation events extending over distances up to 10 bp, with an enrichment 

of motifs consistent with pol-zeta and polymerase slippage mechanisms for adjacent MNVs 

(minimum 1.34, maximum 4.10 fold enrichment of one-step MNV, Fisher’s exact test p-value 

<0.05; Supplementary Fig. 7 and 8). This confirms the presence of mutational mechanisms 

capable of creating simultaneous mutations separated by considerable distances16,29,47-49, 

although further work will be required to fully characterize the underlying processes. 
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Overall, our analysis of MNVs in 15,708 whole genome-sequenced individuals supports 

the previously suggested three major mechanism of MNVs and quantifies the different 

contribution of each mechanism for different MNV patterns at genome-wide scale. 

 

MNV distribution across different genomic regions 

 We next examined how MNV pattern distributions differ between functional annotation 

categories. We used 13 different functional annotations such as coding sequence, enhancer, 

and promoter from Finucane et al39, and the DNA methylation annotation from the Encyclopedia 

of DNA Elements (ENCODE)40, to calculate the number of MNVs that fall into each category 

(Supplementary Table. 2). MNV density, defined as the number of MNVs observed in each 

functional category divided by the total length of the genomic interval belonging to each 

category, is shown in Fig. 4b and c. We found that MNV density of the substitution patterns 

typically involving CpG transitions is positively correlated with the methylation level (linear 

regression Pearson correlation r=0.94 for CG->TA and r=0.87 for CA->TG). Conversely, MNV 

density for non-CpG transversion-related substitution patterns, and the substitution patterns 

related to pol-zeta slippage, negatively correlates with methylation status (linear regression 

Pearson correlation r=-0.88 for GA->TC, r=-0.91 for AG->CC, r= -0.89 for GA->TT, and r=-0.92 

for GC->AA; Fig. 4b and c). 

 Finally, we explored the effect of genic context on MNV origins and discovery: we 

selected the seven major regional annotations around gene coding sequences41,42, and 

calculated the fraction of MNVs likely explained by different mutational origins in each of these 

regions (Fig. 4d). Across all regions, we found that the MNV signal is primarily dominated by 

CpG transitions. The fraction of non-CpG transversions and polymerase slippage at repeats 

were consistently lower than (or nearly equal to) 5% of the overall signal. Pol-zeta signature was 

not as dominant as CpG transitions, except for at the transcription start site region, which has by 

far the lowest methylation rate in those seven annotations and is thus expected to have a lower 

rate of CpG deamination mutations (which are dependent on the methylation of the original 

cytosine). 

Overall, our results suggest that MNV density is highly dependent on the CpG 

methylation status of the surrounding sequence, and that MNVs that originate from non-CpG 

transversions or polymerase slippage at repeat junctions are relatively uncommon compared to 

those driven by CpG transitions or pol-zeta errors. Finally, MNVs that originate from pol-zeta 

error are the most common class of MNVs in the region close to the transcription start sites of 

genes, as low methylation levels in these regions result in low levels of CpG transitions. 
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b.                c. 
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d. 

 
 

Figure 4. Distribution of MNVs across genome 

a, The number and the fraction of MNVs per origin, per substitution pattern. Grey are the 

estimated fraction of MNV originating from two single nucleotide substitution events, brown for 

polymerase slippage at repeat contexts and purple are the others (presumably mainly 

replication error by pol-zeta). The colors along the bottom represent the estimated biological 

origins that dominate MNVs of that specific substitution pattern. b,c, MNV density, defined as 

the number of MNVs per functional annotation divided by the base pair length in the annotation 

(relative to the whole genome region), ordered by the methylation level of the functional 

category. d, Estimated fraction of MNVs by different origins, per functional category around the 

coding region.  

 

 

Discussion 

 We analysed 125,748 human exomes and 15,708 genomes and identified 1,996,125 

MNVs across genome with constituent variants falling within 2 bp distance, including 31,510 that 

exist within a codon. We have shown that MNVs represent an important class of genetic 

variation, and that they have a significant impact on the functional interpretation of genomic 

data, both at the population and individual level. Although we did not encounter an individual in 

which an MNV is the likely cause of a rare disease after sequencing 6,072 individuals from rare 

disease families, we expect that applying our pipeline to larger numbers of disease samples will 

identify previously missed diagnoses, as has been observed in another study of developmental 

delay cases2. 

The large number and high quality of variant calls in the gnomAD database provided 

increased power for statistical analysis of the three major mutational mechanisms (combinations 

of independent SNVs; replication errors by pol-zeta; and polymerase slippage at repeat 
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junctions) responsible for the generation of MNVs, and importantly allowed us to estimate the 

relative contribution of each of these processes.  

Our estimates of substitution pattern-specific MNV mutation rate and fraction come with 

important caveats. Our approach assumes that the local SNV mutation rate is invariant across 

instances of a specific 3 bp context; however, prior work has shown considerable regional 

variation in mutation rate across the genome, as well as variation driven by ancestry, 

environment, and other factors43-46. Another important limitation is the lack of confident 

estimates of insertion and deletion rate as a function of repeat length, which limits the 

confidence of our estimate of the fraction of polymerase slippage. Future large genome-scale 

data sets with more accurate insertion and deletion calls, likely involving long-read sequencing 

data, will be required to improve modeling of insertion and deletion mutations. 

One clear feature of our data set was the signature of non-independence of mutational 

events separated by up to 10 bp, as suggested in various de novo studies16,29,47-49; further 

investigation of these clustered mutations, and contextualizing them with known sources of 

genomic instability, such as homologous recombination50 or transposable elements51,52, will be 

informative in exploring the mechanisms of clustered mutations.  

The complete list of MNVs identified in gnomAD is publicly available 

(https://gnomad.broadinstitute.org/downloads), with the allele count annotated for both genome 

and exome. For the coding regions, we have also annotated the functional consequence of 

constituent SNVs and MNVs separately, and made the result viewable in an intuitive browser 

(https://gnomad.broadinstitute.org). Although some fraction of MNVs is missing from this list due 

to incomplete phasing sensitivity and read coverage, the database provides the most 

comprehensive set of estimates of MNV allele frequencies to date, valuable for further analysis 

of mutational mechanisms as well as the interpretation of MNVs in rare disease and cancer 

genomics53,54. 

Finally, despite the large sample size of our MNV dataset, the fraction of MNVs that we 

have observed out of all the possible MNV configurations is still very far from saturating the 

space of possible MNVs, with only ~0.005% of all possible adjacent MNVs observed in our data 

(Supplementary Fig. 9, 10). Increasing the number of sequenced individuals in both disease and 

non-disease cohorts will permit the discovery and determination of the phenotypic impact of an 

increasingly comprehensive catalogue of variation. This study confirms the importance of 

incorporating haplotypic phase into these efforts to permit the discovery and accurate 

interpretation of the full range of human variation. 
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Methods: 

 

 

MNV calling 

125,748 human exomes and 15,708 genomes from gnomAD 2.1 callset were used for 

the analyses (Supplementary Table 3). We used hail (https://github.com/hail-is/hail), an open 

source, cloud-based scalable analysis tool for large genomic data. For MNV discovery, we 

exhaustively looked for variants that appear in the same individual, in cis, and within 2 bp 

distance for the exome dataset and 10 bp distance for the genome dataset, using the hail 

window_by_locus function (i.e. we computationally checked every pair of genotypes within a 

certain window size, for every individual, to see whether the individual carries a pair(s) of 

mutation in the same haplotype. See supplementary text for further detail). For trio-based 

analyses, we expanded the range to 100 bp to obtain a more macroscopic view. Although we 

performed MNV calling in sex chromosomes for the coding region, we restricted our analysis to 

autosomes, in order to control for differences in zygosity. 

MNV calling in rare disease samples was performed in a similar fashion as in the 

gnomAD exome dataset. 6,072 rare disease whole exome sequences were curated at the 

Broad Center for Mendelian Genomics (CMG)56 and went through the MNV calling pipeline with 

the window size of 2 bp distance. The phenotypes observed in the cohort include: muscle 

disease such as Limb Girdle Muscular Dystrophy (LGMD; roughly one-third of the total), 

neurodevelopmental disorders, or severe phenotypes in eye, kidney, cardiac or other orphan 

diseases (Supplementary File 2).  

 

MNV filtering 

In the gnomAD MNV analysis, MNVs for which one or both of their components have low 

quality reads were filtered out. Specifically, we only selected the variant sites that pass the 

Random Forest filtering, resulting in acceptance of 53.3% of the initial MNV candidates 

(Supplementary Fig. 11). For the exome dataset, we also applied adjusted threshold criteria 

(GQ ≥ 20, DP ≥ 10, and allele balance > 0.2 for heterozygote genotypes) for filtering individual 

variants. For each MNV site, we annotated the number of alleles that appear as MNV, as well 

as the number of individuals carrying the MNV as a homozygous variant. The distribution of 

MNV sites that contain homozygous MNVs is shown in Supplementary Fig. 12. We also 
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collapsed the MNV patterns that are reverse complements of each other, after observing that 

the number of MNVs are roughly symmetric (Before collapsing, the ratio of each MNV pattern to 

its corresponding reverse complement pattern was mostly close to 1, with 0.91 being the lowest 

and 1.05 being the highest for adjacent MNVs) (Supplementary Fig. 13). All the MNV patterns in 

the main text and figures are equivalent to their reverse complement, and we do not distinguish 

them.  

For the rare disease cohort, since our motivation was to find a definite example where 

an MNV is acting as a causal variant for a rare disease with severe phenotype rather than 

obtaining the population level statistics, we did not apply site and sample-specific filtering, as 

opposed to the gnomAD MNV analysis. Instead of being computationally filtered by read quality, 

the 129 putative MNVs (16 gained nonsense mutations, 110 changed missense with high CADD 

score and low gnomAD MNV frequency, and 3 gained missense) went through manual 

inspection by the analysts at the Center for Mendelian Genomics (CMG) at the Broad Institute56, 

after annotating the affected gene. Specifically, all the variants were checked manually under 

the criteria below: 

- Whether the gene affected is constrained in the gnomAD population 

- Whether the case has already been solved with other causal variant 

- Whether the MNV looks real in the Interactive Genome Browser (IGV)57 

- Whether the MNV is in the proband and, if applicable, the segregation pattern of the MNV 

- Whether the known function of the gene affected matches the patient phenotype 

MNVs were filtered out if they failed one or more of the criteria above. These results suggest 

that MNVs explain only a small fraction of undiagnosed genetic disease cases, consistent with 

their overall frequency as a class of variation, and with prior work in large disease-affected 

cohorts2. The summary for MNV analysis in rare disease cohort is also available at 

Supplementary File 2. 

 

Analysis of phasing sensitivity 

In order to compare the phasing information derived from different methods (read-based 

and trio-based), we took an approach of comparing the relative phase (binary classification of 

whether two SNVs of MNV are in the same haplotype or not), as shown in Supplementary Table 

4. We investigated the heterozygous variant pairs whose phasing information is not provided by 

the trio-based phasing and observed that majority (83.5%) of the cases reflected both parents 

carrying a heterozygous variant, a scenario where trio-based phasing is inherently 

uninformative. We also investigated the heterozygous variant pairs whose phasing information 
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is not provided by the read-based phasing. Specifically, unphased pairs tend to have either low 

or high read depth (odds ratio =3.20, Fisher’s exact test p< 10−100 for low, and odds ratio =2.33, 

Fisher’s exact test p< 10−100for high read depth; Supplementary Table 1), consistent with our 

previous understanding that an excess of reads can lead to involvement of erroneous reads and 

thus reduce the confidence of phasing of HaplotypeCaller58 (as well as the lack of the number of 

reads reduces the calling rate). 

 

Analysis of functional impact in coding region 

We focused on the coding region of the canonical transcript of genes and examined the 

codon change and their consequence for all the MNVs that fall in a single codon. When 

comparing with population level constraint, for each MNV, we annotated the constraint metric 

(LOEUF22) of the gene whose protein product is affected. For rescued nonsense mutations, we 

took only the ones are rescued in all the individuals with the component variants (i.e. we 

excluded the ones whose allele count of MNVs are not equal to the allele count of the SNV that 

introduces a nonsense mutation), resulting in 1,532 out of 1,818 rescued nonsense mutations. 

We next used Loss-Of-Function Transcript Effect Estimator (LOFTEE22) in order to exclude the 

nonsense mutations that are not likely to affect the protein function. This resulted in 369 high-

confidence (HC) gained nonsense mutations and 1,394 HC rescued nonsense mutations, which 

were used for the population-level constraint analysis. In addition, we stratified the gene sets by 

core essential/non-essential genes from CRISPR/Cas knockout experiments59,60 as an 

orthogonal indicator of gene constraint (Supplementary Fig. 2. ).  

Although theoretically a combination of insertions and deletions of different lengths could 

also change the individual consequence of the variants (for example, an insertion of length 4 

followed by a nearby deletion of length 1 results in a insertion of length 3, which restores the 

codon reading frame), we focused on SNV combinations and did not try to identify such class of 

variants in this work. Also, we did not include and correct for MNVs consisting of three SNVs in 

a single codon in the analysis of functional impact in coding region, since the number and 

frequency of such MNVs are significantly low (231 in total, with 5 newly gained nonsense, but 

no re-rescued or re-gained nonsense. 0.220 in total per person). The full list of such MNVs are 

available as a separate file at (https://gnomad.broadinstitute.org/downloads). 

 

Defining one-step MNVs and MNVs in repetitive contexts 

A one-step MNV was defined as a MNV for which the allele count of both SNVs that 

make up the MNV is the same and close to the allele count of the MNV itself. We also 
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compared the allele count of constituent SNVs (AC1 and AC2) with the allele count of the 

corresponding MNV (AC_mnv), and observed that the majority of one-step MNVs we 

discovered have AC_mnv/AC1 >0.9 (Supplementary Fig 14). Therefore we expect the false 

discovery rate of one-step MNVs (misclassifying the MNV whose AC1 and AC2 are equal just 

by chance) to be limited. The full distribution of all the allele counts are shown in Supplementary 

Fig 15.  

Repetitive sequences are defined by taking the +/- 4 bp context of the MNV and setting 

the threshold manually, by looking at the distribution of repeat contexts around all the MNVs 

(Supplementary Fig. 16, 17). Specifically, for adjacent MNVs, a sequence is defined as 

repetitive if  

- there is a >6 bp mononucleotide repeat, for both reference and alternative +/- 4 bp context, or  

- there is a ≥6 bp dinucleotide repeat, for both reference and alternative +/-4 bp context 

This threshold was set so that the number of MNVs with equal or higher repeats would be less 

than 5% of the total. Also, the estimated mutation rate under those repetitive contexts is thought 

to be orders of magnitude higher than the background MNV mutation rate originating from the 

combination of two SNV events.  

 

Calculating the proportion of MNVs per biological origin 

 We calculated the proportion of MNV per biological origin by comparing the observed 

number of MNVs (that are not in repetitive contexts) with the expected number of MNV under 

single nucleotide mutational model.  

Specifically if we simply hypothesize most of the MNV are combination of two single 

nucleotide substitution events, we can estimate the relative probability of MNV event per 

substitution pattern. For example, probability of observing a CA to TG MNV in a single 

individual, single site (𝑝(𝐶𝐴 → 𝑇𝐺)) is proportional to 𝑝(𝐶𝐴 → 𝑇𝐴) ⋅ 𝑝(𝑇𝐴 → 𝑇𝐺) +  𝑝(𝐶𝐴 → 𝐶𝐺) ⋅

𝑝(𝐶𝐺 → 𝑇𝐺), and probability of TA to GC MNV (𝑝(𝑇𝐴 → 𝐺𝐶)) is proportional to 𝑝(𝑇𝐴 → 𝐺𝐴) ⋅

𝑝(𝐺𝐴 → 𝐺𝐶) +  𝑝(𝑇𝐴 → 𝑇𝐶) ⋅ 𝑝(𝑇𝐶 → 𝐺𝐶). Former equation involves the product of transition at 

CpG, while both term of the latter are product of transversion at non-CpG, which works as a 

reasonable explanation of the frequency difference of those two MNV patterns.  

Using the same principle (and accounting for reference base pair frequency, population 

number and global SNV mutation rate defined by 3 bp context26, we first constructed a “null 

model” of MNV distribution. In reality, this null model does not represent the real distribution we 

observe, due to biological mechanisms that introduce MNV. Therefore, we allowed additional 
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factor 𝑞, that denotes the mutational event where two SNVs are introduced at the same time. 

For the example of 𝑝(𝐶𝐴 → 𝑇𝐺), we model this probability to be proportional to 𝑝(𝑇𝐴 → 𝐺𝐴) ⋅

𝑝(𝐺𝐴 → 𝐺𝐶) +  𝑝(𝑇𝐴 → 𝑇𝐶) ⋅ 𝑝(𝑇𝐶 → 𝐺𝐶) +  𝑞(𝐶𝐴 → 𝑇𝐺), and try to estimate the 𝑞 term, which 

corresponds to the proportion of MNVs that are explained by non-SNV (and non-repeat) factor. 

Further details are explained in the supplementary text (section “Models and assumptions for 

calculating the proportion of MNV per biological mechanism”).  

In addition, for each of MNV pattern, we annotated the predicted major mechanism for 

each MNV pattern in the following order:  

1. “pol-zeta”, for the patterns known as polymerase signature (GA->TT and GC->AA) 

2. “repeat”, for the patterns whose fraction of MNVs in repeat contexts are higher than 20%  

3. One of “CpG_Ti”, “Ti”, “CpG_Ti_Tv”, “TiTv”, ”Tv”, based on possible combinations of single 

nucleotide mutational processes. For example, “CpG_Ti” is when transition in CpG combined 

with another transition can occur in the mutational processes (Supplementary File 3) 

 

Estimation of the global MNV rate per substitution pattern 

In order to estimate the global MNV mutation rate for adjacent MNVs, as well as the 

mutation rate per MNV pattern, we first focused the number of one-step MNVs, assuming that 

there are no recurrent mutations and therefore the allele frequency of constituent SNVs are 

equal if and only if if originates from an MNV event in a single generation. In this section, we will 

simply write one-step MNV of distance 1 bp (i.e. adjacent) as MNV. 

We then calculated the global MNV mutation rate under the Watterson estimator model, 

as in Kaplanis et al2. Specifically, we divided the number of MNV sites by the number of SNV 

sites in our gnomAD dataset, and scaled by the global single nucleotide mutation rate identified 

in previous research (1.2 × 10−8), which yielded 2.94 × 10−11per 2 bp per generation. This is 

roughly two thirds of the estimation provided by the Kaplanis et al2 using trio data, slightly 

smaller presumably due to differing filtering method. Next, In order to get the mutation rate per 2 

bp for each of the MNV patterns, we simply scaled the global MNV mutation rate described 

above by the number of reference 2 bp and the coverage difference. The full data for all the 78 

patterns is shown in Supplementary File 3. Further details are explained in the supplementary 

text (section “Models and assumptions for estimation of the global MNV rate per 

substitution pattern”).  
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Functional enrichment 

13 functional annotations were collected from Finucane et al39 as a bed file (which 

originates from database such as ENCODE, Roadmap61 and UCSC genome browser62.) For the 

methylation data, we collected the genome methylation level from ENCODE, and calculated the 

fraction of methylated CpG out of all the CpGs in the region, and ordered by the fraction 

(Supplementary Table 2). 

MNV density calculation was performed under the null hypothesis that, the number of 

MNV of type 𝑊𝑋 → 𝑌𝑍 we observe in an arbitrary genomic interval is proportional to the number 

of 𝑊𝑋 in the interval. Specifically, the MNV density of 𝑊𝑋 → 𝑌𝑍 in interval 𝐼 is defined as  

𝐷(𝑊𝑋 → 𝑌𝑍| 𝐼)  =  𝑁(𝑊𝑋 → 𝑌𝑍 | 𝐼) / 𝑁(𝑊𝑋|𝐼), where 𝑁(𝑊𝑋 → 𝑌𝑍 | 𝐼)is the number of MNVs of 

𝑊𝑋 → 𝑌𝑍, and 𝑁(𝑊𝑋|𝐼)is the number of 𝑊𝑋 in the reference genome we observe in that 

specific genomic interval. We then normalized the density by dividing by 𝐷(𝑊𝑋 → 𝑌𝑍| 𝐼 =

𝑤ℎ𝑜𝑙𝑒 𝑔𝑒𝑛𝑜𝑚𝑒)for scaling purpose (i.e. 𝐷(𝑊𝑋 → 𝑌𝑍| 𝐼) = 𝑘 means that the probability of 

observing a mutation of 𝑊𝑋 → 𝑌𝑍 given a sequence context of 𝑊𝑋 is 𝑘 times higher in genomic 

functional category 𝐼 than the overall genome.)  

For estimating the fraction of MNVs per origin, we took a thresholding approach and 

defined four MNVs (CA->TG, AC->GT, CC->TT, and GA->AG) as CpG signal, two (GC->AA, 

GA->TT) as pol-zeta, five as repeat (AA->CC, AA->TT, TA->AT, AT->TA, CA->AC, AC->CA) 

and transversion (TA->CG, AC->GT, CA->TG, CG->GA, CG->TA) signal (and left all the other 

78-(4+2+5+5)=62 patterns as “others”, in order to highlight the strongest signals) based on the 

result from Fig. 3. The fraction of MNVs per origin is then defined simply as the number of 

MNVs that fall into that pattern divided by all the MNVs, in the genomic interval. The coverage 

difference per interval was as small as negligible (Supplementary Table 3).  

 

 

Data availability: 

The list of coding MNVs in gnomAD exome are available at  

gs://gnomad-public/release/2.1/mnv/gnomad_mnv_coding.tsv (tab separated file). The coding 

MNVs consisting of three SNVs in a single codon is available as a separate file at gs://gnomad-

public/release/2.1/mnv/gnomad_mnv_coding_3bp.tsv .  

The list of all the MNVs in gnomAD genomes are available at  

gs://gnomad-public/release/2.1/mnv/genome/gnomad_mnv_genome_d{i}.tsv.bgz (tab separated 

file, compressed. Replace {i} (0<i<11) with the distance between two SNVs of MNV.), or 
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gs://gnomad-public/release/2.1/mnv/genome/gnomad_mnv_genome_d{i}.ht (hail table. Replace 

{i} (0<i<11) with the distance between two SNVs of MNV.). 

Explanations for each column in each file can be found at gs://gnomad-

public/release/2.1/mnv/mnv_readme.md .  

All the files above are also available at the download page of the gnomAD browser 

(https://gnomad.broadinstitute.org/downloads). 

 

 

Code availability 

The code used in the study is available at https://github.com/macarthur-

lab/gnomad_mnv . 
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