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single-cell gene expression studies promise to reveal rare 
cell types and cryptic states, but the high variability of 
single-cell rnA-seq measurements frustrates efforts to assay 
transcriptional differences between cells. We introduce the 
census algorithm to convert relative rnA-seq expression 
levels into relative transcript counts without the need for 
experimental spike-in controls. Analyzing changes in relative 
transcript counts led to dramatic improvements in accuracy 
compared to normalized read counts and enabled new statistical 
tests for identifying developmentally regulated genes.  
census counts can be analyzed with widely used regression 
techniques to reveal changes in cell-fate-dependent gene 
expression, splicing patterns and allelic imbalances.  
We reanalyzed single-cell data from several developmental  
and disease studies, and demonstrate that census enabled 
robust analysis at multiple layers of gene regulation.  
census is freely available through our updated single-cell 
analysis toolkit, monocle 2. 

Differential gene expression analysis, typically powered by statis-
tical regression, is central to nearly all single-cell transcriptomic 
studies. As experiments now capture tens of thousands of cells1,2, 
such regressions could in principle be used to detect gene regu-
latory changes across individual cells as a function of develop-
mental progression, position in an embryo, or genetic sequence. 
However, such changes are difficult to model3,4 because of the 
high biological and technical noise in single-cell measurements. 
Many studies report high rates of ‘dropout’, wherein some cells of a 
nominally homogeneous population express high levels of a gene 
and others none at all. Drop-outs have spurred the deployment of 
hurdle models5 that overcome the limitations of simpler regres-
sion approaches, typically at a cost in speed, numerical stability 
or design flexibility for the user.

Single-cell protocols that use exogenous RNA ‘spike-in’ stand-
ards6 or unique molecular identifiers7,8 (UMIs) enable analysis  
at the level of transcript counts rather than read counts. Previous 
work4 had suggested that comparing UMIs, rather than read 
counts, between cells would improve regression analysis. 
However, because UMI protocols are based on counting 3′-end 
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tags, they do not report expression at allele or isoform resolu-
tion. Spike-in-based protocols use a linear regression between the 
normalized read counts and known molecular concentrations of 
spiked transcripts to convert relative cellular RNA read counts to 
transcript counts. However, exogenous standards must be care-
fully calibrated to avoid dominating the libraries, and may be 
subject to different rates of degradation or reverse transcription 
than endogenous RNA. Many published studies forgo the use of 
spike-in controls, restricting subsequent reanalysis.

Here we introduce Census, an algorithm that converts con-
ventional measures of relative expression such as transcript  
per million (TPM) in single cells to relative transcript counts 
without the need for spike-in standards or UMIs. ‘Census 
counts’ eliminate much of the apparent technical variability in 
single-cell experiments and are thus easier to model with stand-
ard regression techniques than normalized read counts. We 
demonstrate the power of transcript count analysis with a new 
regression model, branch expression analysis modeling (BEAM),  
for detecting genes that change after fate decisions in devel-
opment. We also demonstrate that Census counts can be used 
to detect developmental regulation robustly at splice isoform  
and allele resolution. Census and BEAM are implemented in 
Monocle 2, the second major release of our open-source single-
cell analysis toolkit (Supplementary Software and https://github.
com/cole-trapnell-lab/monocle-release).

results
estimating relative transcript counts in spike-in-free 
experiments
Census exploits two properties of single-cell RNA-seq data sets 
produced with current protocols (Fig. 1a). First, mRNA degrada-
tion after cell lysis and inefficiencies in the reverse transcription 
reaction result in the capture of as few as 10% of the transcripts in 
a cell as cDNA. Second, most protocols rely on template-switching  
reverse transcriptases primed at the poly(A) tail of mRNAs and 
thus generate full-length cDNAs9. In these libraries, genes are 
detected most frequently as a single cDNA molecule (Fig. 1b 
and Supplementary Fig. 1). Thus, all detectably expressed genes 
measured at or below the mode of the (log-transformed) relative 
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abundance distribution in each cell should be present at around 
one cDNA copy (Online Methods).

We assessed Census’ accuracy by reanalyzing several experiments 
that included spike-in controls4,10–15 (accession codes for all data 
we analyzed are available in Online Methods). Reanalysis of devel-
oping lung epithelial cells with Census recovered estimates of total 
per-cell transcript counts that were correlated with but not equal to 
those derived by linear regression against spike-in controls (Fig. 1c). 
This is likely because of Census’ inability to control for nonlinear 
cDNA amplification during library construction. However, changes 
in Census counts between groups of cells collected at the same time 
points were highly similar to changes measured via spike-in con-
trols (Fig. 1d,e). Census produced accurate changes in relative tran-
script counts for seven additional data sets, including two based on 
UMIs4,10,13, demonstrating that the algorithm can work well with 
different single-cell RNA-seq protocols (Supplementary Figs. 1  
and 2). Downsampling and simulation experiments revealed that 
Census counts faithfully captured changes in expression between 
groups of cells with as few as 100,000 reads per cell and over a wide 
range of mRNA capture rates (Supplementary Figs. 3 and 4). Taken 
together, these benchmarking experiments show that Census recov-
ered an accurate measure of changes in relative transcript counts 
between single cells without the need for spike-in controls.

census counts improved differential analysis accuracy
We next assessed whether using Census counts improved down-
stream differential analysis. We tested several popular tools16,17 

for differential expression with both read counts and relative 
transcript counts, including two tools specifically developed for 
single-cell data, Monocle18 and single-cell differential expression 
(SCDE)19 (Fig. 2a and Supplementary Fig. 5). When provided 
with read counts as a measure of expression, consensus between 
the tools was poor, with only 1,971 of 5,805 (34%) differentially 
expressed genes reported by all tools (except SCDE, which has 
very high precision but low recall), and few agreed with those 
reported by a nonparametric, permutation-based test between 
spike-in-derived expression levels (Fig. 2b and Online Methods).  
Tools designed for bulk RNA-seq analysis, such as DESeq2 (ref. 17),  
produce false discovery rates as high as 61%. SCDE, which 
includes explicit modeling of dropouts, returned few false posi-
tives but also captured a smaller fraction of the true positive set.

Repeating these tests using Census counts showed marked 
improvements in differential expression accuracy compared to 
read counts and TPM (Fig. 2a). We attribute the improvements 
to the fact that the negative binomial distribution, which under-
lies most commonly used RNA-seq analysis software16,18,19, fits 
relative transcript count data much better than read count data, 
as noted in ref. 4 (Supplementary Fig. 5). For example, when 
targeting a false discovery rate of 10%, DESeq2’s empirical false 
discovery rate dropped from 61% to 22%, with little to no drop in 
sensitivity, which remained as high as 82%. Monocle’s false dis-
covery rate dropped from 53% to 11%. The use of Census counts 
dramatically improved agreement between the tools, which 
agreed on 2,437 differentially expressed genes among a total of 
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Figure 1 | Census approximation of relative transcript counts in single cells without external RNA standards. (a) Typical single-cell RNA-seq procedure 
for estimating mRNA abundances via spike-in standards. Losses alter the distribution of relative gene expression levels in a single cell. RT, reverse 
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Census transcript counts (top); transcript counts derived by spike-in regression (bottom). (e) Fold changes in gene expression based on Census  
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4,220 (70%), similar to the 62% (2,367/3,793 genes) consensus 
obtained with spike-in-derived levels (Fig. 2b and Supplementary 
Data). Census also improved differential expression accuracy  
relative to gold standards derived from bulk RNA-seq18 measure-
ments (Supplementary Fig. 6). Taken together, our benchmarks 
demonstrated that single-cell relative transcript counts produced 
by Census can be more accurately compared with commonly  
used differential analysis methods than normalized read  
counts, and are thus preferable when spike-in standards or UMIs 
are unavailable.

Branch point analysis revealed regulators of cell fate
Many single-cell gene expression studies aim to identify  
gene regulatory circuits that control cell-fate decisions20,21.  
We recently developed Monocle, an algorithm that organizes 

single cells along trajectories and can describe gene-expression  
changes during differentiation. Monocle introduced the concept 
of pseudotime, which quantifies each cell’s progress through 
development. Pseudotime resolves cascades of gene-regulatory  
changes that accompany differentiation and other dynamic  
cellular programs18. Monocle produced more reliable tests  
for differential expression along a trajectory when provided 
with Census counts than with relative expression values 
(Supplementary Fig. 7).

Analyzing cells at branch points between two or more mutually 
exclusive developmental trajectories22 could reveal the mecha-
nisms by which such decisions are made. For example, scruti-
nizing genes upregulated in common myeloid progenitors but 
downregulated in common lymphoid progenitors has shed light 
on the molecular regulation of cell fate in hematopoiesis23,24.
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Figure 2 | Census counts improved the accuracy of differential expression analysis. (a) Receiver-operating characteristic (ROC) curves showing the 
accuracy of differential expression (DE) analysis between E14.5 and E18.5 lung epithelial cells25. Tools were provided with relative expression levels, 
normalized read counts, and transcript counts estimated with spike-ins or Census. A permutation-based test was applied to the spike-in-based  
expression levels to determine a ground truth set of DE genes. TPM (true total), counts derived by scaling TPM values by the correct per-cell total RNA. 
AUC, area under the curve. (b) Consensus between Monocle, DESeq2, edgeR and permutation tests using different measures of expression. Lighter bar 
colors, size of the union of DE genes reported by any of the four tests. Darker bar colors, number of DE genes identified by all tests.
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To explore a developmental fate decision, we reanalyzed data on 
distal lung epithelium specification based on sequencing epithelial 
intermediates that give rise to type I (AT1) and type II (AT2) pneu-
mocytes25. Monocle reconstructed a trajectory with a single branch 
point leading from progenitors to two outcomes corresponding to 
the AT1 and AT2 fates. Cells at the beginning of the trajectory exhib-
ited high levels of proliferation markers26 Ccnb2 and Cdk1, whereas 
cells after the branch point exhibited much lower levels (Fig. 3a). 
High expression of the AT1 cell marker27 Pdpn was restricted to 
cells on one branch, whereas cells expressing the AT2 marker28 
Sftpb at high levels were located on the other branch. Cells classified 
as AT1 and AT2 according to known markers25 fell exclusively along 
the branches, with what the authors termed “bipotent progenitors” 
at or near the branch point. (Supplementary Fig. 8).

To detect cell-fate-dependent genes in a statistically robust 
manner, we developed BEAM, a generalized linear modeling 

(GLM)29 strategy for analyzing branched single-cell trajectories 
(Fig. 3b, Supplementary Fig. 9 and Online Methods). BEAM 
identified 1,219 genes (false discovery rate (FDR) < 5%) as either 
AT1- or AT2-fate-dependent, including canonical markers27  
such as Pdpn and Sftpb (Fig. 3c). AT1-restricted genes were 
strongly enriched for ontology terms related to tube development, 
cytoskeletal remodeling and cell morphogenesis (Supplementary 
Fig. 10 and Supplementary Table 1), whereas AT2-restricted 
genes were enriched for terms related to lipid processing, con-
sistent with the production of lipid-rich surfactant by AT2  
cells in the mature lung. Regulatory DNA elements proximal  
to these genes were enriched for binding sites of 74 transcrip-
tion factors, eleven of which exhibited significant branch- 
dependent expression; Supplementary Fig. 11). These included 
several factors such as Tcf7l2 that are known to regulate  
lung development30–35.
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disruption of interferon signaling induced a branch in the 
dendritic cell lipopolysaccharide-stimulation trajectory
Branch points in single-cell trajectories represent decision points 
that are enacted by regulated changes in the transcriptional pro-
gram; they can arise during development, but also in response to 
mutations, treatment with drugs or other cellular perturbations. 
We re-analyzed single-cell data on the transcriptional response 
of mouse bone-marrow-derived dendritic cells (BMDCs) to 
lipopolysaccharide (LPS)36 (Fig. 4a). In BMDCs, LPS triggers a 
paracrine feedback loop of type I interferon signaling mediated 
in part by Stat1 (refs. 37–39). The authors compared BMDCs 
from wild-type mice to those from mice that lack the receptor 
for interferon alpha (Ifnar1−/−) or Stat1 (Stat1−/−)36. Monocle 
recovered a trajectory with a single branch point, with cells from 
Infar−/− or Stat1−/− mice distributed on an alternative trajectory 
in response to LPS stimulation compared with those from wild-
type mice (Fig. 4b).

BEAM identified 870 genes (FDR < 5%) dependent on this 
branch, many associated with interferon signaling (Fig. 4c, 
Supplementary Fig. 12 and Supplementary Table 1). Peaks 
corresponding to open chromatin collected in ref. 40 proximal 
to branch-dependent genes were enriched for Stat1/2 and Irf1/2 
binding motifs (Supplementary Fig. 13). Stat1/2 and Irf1/2 
were themselves significantly branch-dependent, with branch-
ing pseudotimes substantially earlier than their putative targets, 
confirming that BEAM can distinguish the regulatory factors that 
drive branching in single-cell trajectories from genes downstream  
(Fig. 4d,e). Monocle 2 and BEAM demonstrated that loss of a key 
paracrine loop generated an ‘alternative trajectory’, suggesting 
that single-cell trajectory analysis can be useful for defining how 
a signaling pathway regulates a larger process.

census counts enabled single-cell differential splicing analysis
Methods for detecting splicing changes in single-cell data are 
beginning to appear, but have suffered from isoform-level meas-
urement variability. For example, SingleSplice41 uses a hur-
dle model to compare variation in isoform frequencies against 
expected technical variation. However, its contrasts are limited 
to tests for excess variability in groups of cells, rather than as 
a function of arbitrary variables in a regression, and it requires 
calibration with spike-in standards.

We used Census to estimate isoform-level transcript counts in dif-
ferentiating human myoblasts, a classic model system for vertebrate 
splicing. Modeling isoform counts from each gene as a Dirichlet 
multinomial distribution captured pseudotime-dependent shifts 
in splicing in 74 genes (FDR < 0.1), including well-characterized 
components of the molecular machinery required for muscle  
contraction such as tropomyosin TPM1, which has been intensely 
studied in myoblasts as a model of alternative splicing42,43 (Fig. 5).  
TPM1 has three well-characterized sets of alternatively spliced 
exons, with exons 6b and 9b excluded in myoblasts but included 
in myotubes44. These exons became progressively more frequent 
in TPM1 mRNAs, with inclusion of exon 6b preceding inclusion 
of exon 9b. Each isoform of the 74 differentially spliced genes 
showed one of seven distinct pseudotemporal expression pat-
terns (Supplementary Fig. 14a,b), coinciding with shifts in the 
actin family from widely expressed members (ACTB and ACGT) 
to partial replacement with muscle-specific ones (ACTA1 and 
ACTA2) (Supplementary Fig. 14c). Our analysis supports the 

view that cytoskeletal reorganization during myoblast differen-
tiation is globally coordinated not only at the level of genes but 
across individual splice variants.

census counts enabled allelic balance analysis in single cells
Single-cell analysis could in principle shed light on the degree to 
which the two alleles of each gene are regulated in a coordinated 
manner. A recent study tracked single-cell gene expression from 
preimplantation mouse embryos of mixed genetic background 
(CAST/EiJ × C57BL/6J)45. Coupling allele-level relative abun-
dances from Kallisto46 with Census produced relative allele tran-
script counts that, when modeled similarly to isoform counts, 
recapitulated many of the key observations made in the initial 
study. As expected, nearly all RNAs matched the maternal allele in 
zygotes and early 2-cell embryos, consistent with little to no tran-
scription from the embryonic genome (Fig. 6a). Allelic balance for 
most genes equilibrated to 50% as transcription from the embry-
onic genome began in mid-to-late 2-cell embryos, with the X 
chromosome notably excepted (Fig. 6a). Paternal X-chromosome  
inactivation manifested in female embryos by the 16-cell stage, 
with progressively fewer genes exhibiting contributions from the 
paternal X chromosome (Fig. 6b,c), except for genes known to 
escape inactivation (Supplementary Fig. 15).

The original study reported widespread stochastic monoallelic 
gene expression in individual cells45. This claim was challenged by 
an allele-specific expression analysis in embryonic stem cells that 
used a statistical model to attribute much of the apparent stochastic 
monoallelic expression to technical sources47. We tested whether 
using Census to estimate allelic transcript counts instead of allelic 
read counts would reduce observed stochastic monoallelic expres-
sion to expected levels. Consistent with the generative model used 
in ref. 47, the expected rate of monoallelic expression was near 
100% for genes expressed at a single copy, and decreased with 
increasing expression (Fig. 6d). Of 6,608 ‘allele-informative’ genes 
in the genome, 95.0% produced monoallelic transcript counts 
within the expected range. In contrast, only 77% of genes fell 
within the range obtained by fitting similar models to normalized  
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read counts for each allele. We interpret this to mean that a sub-
stantial portion of apparent monoallelic expression arose because 
the sequenced libraries correspond to a small proportion of the 
true RNA molecules in each cell (owing to dropout), a techni-
cal artifact that is accounted for when allelic gene expression is  
modeled using Census-estimated relative transcript counts but 
not when it is modeled using normalized read counts.

discussion
Efforts to detect changes in gene regulation in development have 
grappled with high technical and biological variability, demand-
ing specialized statistical methods that explicitly model drop-
outs and other nuisance variation. Here we showed that analyzing 
changes in relative transcript counts leads to dramatic reductions 
in apparent technical variability compared to normalized read 
counts, making single-cell RNA-seq compatible with widely used 
regression techniques. We have developed Census, a normaliza-
tion algorithm that can convert relative expression levels from 
read counts into per-cell transcript counts without the need for 
spike-in standards or UMIs. The algorithm requires only that 
genes are most frequently present at one cDNA molecule in each 

cell’s library. Through reanalysis of several data sets, we showed 
that this is the case with most current protocols, owing to mRNA 
capture rates lower than 50% and the generation of full-length 
cDNAs during reverse transcription. Census cannot control 
for amplification biases, and thus does not produce estimates 
of lysate mRNA abundances that perfectly match those derived 
with spike-ins or UMIs. When spike-ins or UMIs are available, 
transcript counts should be recovered using them rather than 
Census. However, we showed through extensive benchmarking 
that differential analysis results with Census counts were highly 
concordant with those from spike-ins. Tools widely used for bulk 
RNA-seq analysis that perform poorly when provided with read 
counts work vastly better with Census counts, alleviating the need 
for software tailored for single-cell RNA-seq.

To illustrate Census’ power, we developed three regression-
based methods to detect gene regulatory changes. The first, 
BEAM, builds on our previous work tracking gene-expression 
changes in single-cell trajectories, helping pinpoint the moment 
at which cell-fate decisions occur in a complex biological proc-
ess. BEAM identified hundreds of genes differentially regulated 
during specification of the type I and type II pneumocytes in the 
alveolar epithelium. To our surprise, branched cell trajectories 
arose not only in development, but also in response to genetic 
perturbations, suggesting that branch analysis may be useful  
in many biological contexts. The second method uses Census 
counts to find genes undergoing pseudotime-dependent changes 
in splicing. Reanalysis of differentiating myoblasts showed wide-
spread alteration in isoform ratios in genes involved in muscle con-
traction and cytoskeletal structure, with some genes such as that 
encoding TPM1 showing a sequence of pseudotime-dependent  
shifts. The third method captures changes in allelic transcript 
counts derived with Census. By reanalyzing data from preimplanta-
tion embryos, we confirmed the authors’ timing of transcriptional  
activation of the embryonic genome and X-chromosome  
inactivation45. In contrast to the original study, we did not see 
substantial evidence of random, monoallelic expression on the 
autosomes, and attribute this observation to inadequate modeling 
of dropouts in normalized read counts. Monoallelic expression 
at the transcript count level was in line with expectations under 
a simple overdispersed binomial regression model.

We expect that the use of normalized transcript counts, avail-
able through Census, will continue to unveil new mechanisms 
of gene regulation, including at the allele and isoform level, in 
development and disease.

methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 6 | Census detected shifts in allelic balance in single cells  
during embryogenesis. (a) A quasibinomial regression model detected 
changes in allelic balance in single cells as a function of embryo stage. 
(b) Spread of X-chromosome inactivation as measured by Census for 
female embryos at different stages (compare with ref. 45 figure 2b).  
(c) Number of genes with at least 10% contribution from the maternal  
and paternal copies of X chromosome. (d) Observed monoallelic expression 
in single cells from late stage embryos as measured by Census transcript 
counts (top) or normalized read counts (bottom). Red line indicates 
median fraction of monoallelic calls as a function of average transcript 
count across cells. Only autosomal genes are shown. Black bars indicate 
95% prediction interval generated by a quasibinomial regression model 
fit to each gene, with the median of the gene intervals indicated by the 
blue line. Light red points indicate individual genes that fall outside the 
prediction interval.
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online methods
A generative model for single-cell RNA-seq experiments with  
a spike-in ladder. Census is motivated by a generative model of  
single-cell (sc)-RNA-seq similar to the one developed by Kim et al.47.  
When performing sc-RNA-seq, each individual cell is lysed to 
recover its endogenous RNA molecules, some fraction of which 
may be degraded or lost. Lysis thus involves an RNA recovery rate 
α. Spike-in transcripts are then added into the cell lysate. Note 
that spike-in transcripts are added to the lysate as naked RNA, 
and thus may be degraded at different rates from the endogenous 
RNA. We denote the ladder recovery rate as β. The RNA counts 
in the lysate can be written as 

Cell lysate : ,
Y Y

S S

ij
l

i ij
c

ij
l

i ij

≈

≈



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

a

b

where Yl, Sl and S are the transcript counts of endogenous RNA in 
cell lysate, spike-in transcript counts in cell lysate and the spike-in 
transcript counts added into the cell lysate. The first subscript in 
all variables (here and below) corresponds to cell and the second 
subscript corresponds to gene index. Note that we cannot directly 
observe Yij

c , the true transcript counts for gene j in cell i, and thus 
α is an unknown variable.

The RNA molecules and spike-in transcripts will then be sub-
jected to reverse transcription and amplified to make a cDNA 
library. The expected number of cDNA molecules generated 
from each RNA molecules is denoted by θ. The cDNA counts can  
be written: 

cDNA : ,
Y Y

S S

ij
d

ij
l

i

ij
d

ij
l

i

= ⋅

= ⋅







q

q

where Yd and Sd are the cDNA counts of endogenous RNA, spike-
in cDNA counts successfully converted from the corresponding 
transcript counts Yl, and Sl in cell lysate under a uniform capture 
rate θ, which for current protocols is less than 1.

Our model generates sequencing reads from the cDNA.  
The relative cDNA abundances are calculated as 
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for spike-in RNA.
The model then generates γ reads per cDNA molecule on 

average; with sufficient sequencing, γ will be larger than 1; we 
expect each cDNA molecule to generate at least one sequencing  
read. This process can be regarded as a multinomial sampling 
of R reads 

R Y Si
j

n

ij
d

ij
d= +

=
∑g
1
( )

from the distribution of relative cDNA abundances mentioned 
above which can be represented as 
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where R Ri
e

i
s,  denotes the reads sampled for cDNA from the 

endogenous RNA or spike-in RNA in cell i, Y Sij
r

j
r, ⋅  denotes the 

reads sampled for cDNA from the endogenous RNA j or spike-in 
RNA j in cell i.

The model described here is essentially a special case of the 
model in Kim et al.47, and differs mainly in that their model 
describes transcript-level capture rates and sequencing rates with 
beta and gamma distributions, respectively. In contrast, we simply 
use global constants for these rates. As Census does not make 
use of variance estimates from the generative model, this sim-
pler model is sufficient for calculating key statistics (for example,  
mode of the transcript counts) needed to convert relative to abso-
lute abundances.

A simulator for the sc-RNA-seq process. To generate an  
in silico library for a single cell, we built a simulator that  
first selects G genes at random from a relative expression profile 
(Pbulk) derived from a bulk RNA-seq experiment to represent 
the hypothetical relative abundance of a single-cell in cell lysate. 
These values are rescaled to proportions (i.e., summing to 1)  
or ρscaled 

rscaled bulkscale uniform~ ( ( ( , , ), ))P G1 2 …

These proportions are then used to parameterize a multinomial 
distribution from which T transcripts are drawn to obtain the 
transcripts in the library space where we also consider an RNA 
recovery rate αi. Therefore, we have 

Library multinomial scaled: ~ ( , ( ) )Y Tij
l

i ir a

To this pool of transcripts, a fixed number of spike-in tran-
scripts are added, forming a mixture of simulated ‘endog-
enous’ and ‘spike-in’ mRNAs where the ladder recovery rate is 
represented as βi. Of these, θi percent are selected uniformly  
at random to simulate incomplete mRNA capture by the reverse 
transcription process. Finally, the abundances of these cDNAs 
relative to one another were used to parameterize another multi-
nomial distribution, from which Ri reads are sampled. The read 
counts are then used to calculate the relative abundance for the 
spike-in and the endogenous RNA.

In this study, we systematically simulated the sc-RNA-seq  
process obtained from bulk RNA-seq measurements made in 
Trapnell and Cacchiarelli et al.18 by varying the gene number G, 
capture rate θ, endogenous RNA degradation α, spike-in degrada-
tion β, total endogenous transcript count T and total number of 
reads R. Results based on simulation are shown in Supplementary 
Figure 4.
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Estimating the capture rate based on spike-in ladder. Similar 
to Kim et al.47, spike-in transcripts can be used to infer the rate 
at which lysate RNAs are converted to cDNA. The probability of 
observing a particular spike-in transcript in the sequenced read 
counts can be used to estimate the capture rate θ. For a given 
spike-in transcript i with transcript counts s calculated based on 
spike-in ladder (see Supplementary Note 1), the probability to 
observe at least one copy of this transcript is ρ = 1− (1 − θ)s. We 
assumed the capture rate, θ, is the same for all spike transcripts 
and thus can use the following objective function to estimate the 
capture rate using all spike transcripts 

min ( ( ) )
q

q
i

s
i
so∑ − − −1 1 2

where oi
s is the probability for all transcripts with s copies have 

nonzero TPM values. In order to robustly estimate θ, we assumed 
a constant capture rate for cells collected in each time point (lung 
or neuron experiment15,25) or the whole data set (other experi-
ments) and pooled them for estimating θ.

Census. Census aims to convert relative abundances Xij into lysate 
transcript counts Yij. Without loss of generality, we consider rela-
tive abundances is on the TPM scale, and assume that a gene’s 
TPM value is proportional to the relative frequencies of its mRNA 
within the total pool of mRNA in a given cell’s lysate, i.e., 

TPMij
ij

j ij

Y

Y
∝

=∑ 1

The generative model discussed above predicts that when only 
a minority of the transcripts in a cell is captured in the library, 
signal from most detectably expressed genes will originate from 
a single mRNA. Because the number of sequencing reads per 
transcript is proportionate to molecular frequency after normal-
izing for length (i.e., TPM or FPKM), all such genes in a given cell 
should have similar TPM values.

Census works by first identifying the (log-transformed)  
TPM value in each cell i, written as xi*, that corresponds to genes 
from which signal originates from a single transcript. Because 
our generative model predicts that these most detectable genes 
should fall into this category, we simply estimate xi* as the mode 
of the log-transformed TPM distribution for cell i. This mode 
is obtained by log-transforming the TPM values, performing a 
Gaussian kernel density estimation and then identifying the peak 
of the distribution. Given the TPM value for a single transcript 
in cell i, it is straightforward to convert all relative abundances 
to their lysate transcript counts. We estimate the total number of 
mRNAs captured for cell i: 

M
n

F x Fi
i

Xi i Xi

= ⋅
−

1
q e( ) ( )*

where FXi represents the cumulative distribution function for the 
TPM values for cell i, e  is a TPM value below which no mRNA is 
believed to be present (by default, e = 0 1. ), and ni is the number 
of genes with TPM values in the interval ( , )*e xi . That is, we sim-
ply calculate the total number of single-mRNA genes and divide 
this number by the fraction of the library contributed by them  
to estimate the total number of captured mRNAs in the cell.  

This number is scaled by (1/θ) to yield an estimate for the number 
of mRNAs that were in the cell’s lysate, including those that were 
not actually captured. This scaling step is performed mainly to 
facilitate comparison with spike-in-derived estimates. Although 
we do not know the capture rate θ a priori, it is a highly protocol- 
dependent quantity that appears to have little dependence  
on cell type or state. Throughout our analysis, we assumed a value 
of 0.25, which is close to the lung and neuron experiments of  
refs. 25 and 15.

With an estimate of the total lysate mRNAs Mi in cell i, we sim-
ply rescaled its TPM values into mRNA counts for each gene 

Ŷ X
M

ij ij
i= ⋅

106

Limitations of Census. Census and our generative model of  
sc-RNA-seq assume that TPM is proportional to the true relative 
abundance in the cell lysis, i.e., 

TPMij
ij

j ij

Y

Y
∝

=∑ 1

However, nonlinear amplification at any stage of the library con-
struction protocol could distort this relationship. We can see this 
distortion when fitting the linear regression model, log(TPMij) =  
k log(Yij) + b, to the spike-in data that recovers a value of k that devi-
ates from 1, which indicates that TPMij ∝ (Yij)k. In practice, we found 
that k ranged from around 0.5 to near 1, depending on the protocol 
and the laboratory. We have not observed k much larger than 1.

The inability to estimate k without making strong assumptions 
surrounding the expected number of total RNAs in a given cell 
means that Census and indeed any measure of relative abundance 
not normalized by spike-in standards will be limited in its abil-
ity to recapitulate the transcript counts derive from spike-based 
conversion. We argue here that this limitation is not onerous in 
differential analysis because its impact on fold changes between 
cells is small.

Testing for branch-dependent expression. Monocle assigns each 
cell a pseudotime value and a “State” encoding the segment of the 
trajectory it resides upon based on the PQ-tree algorithm (see the 
supplementary information for Trapnell and Cacchiarelli et al.18 
for further information). Transcript counts values were variance-
stabilized49 via the technique described by in ref. 49 before tree 
construction.

In Monocle 2, we extended the capability to test for branch-
dependent gene expression by formulating the problem as a con-
trast between two negative binomial GLMs.

The null model 

NB Census counts sm.n Pseudotime( ) ~ ( )s

for the test assumes the gene being tested is not a branch specific 
gene, whereas the alternative model 

NB Census counts sm.ns Pseudotime
Branch sm.ns Pseudotime

( ) ~ ( )
(+ + )) : Branch

assumes that the gene is a branch specific gene where : represents 
an interaction term between branch and transformed pseudotime,  
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and NB means negative binomial distribution. Each model 
includes a natural spline (here with three degrees of freedom) 
describing smooth changes in mean expression as a function of 
pseudotime. The null model fits only a single curve, whereas the 
alternative will fit a distinct curve for each branch. Our current 
implementation of Monocle 2 relies on VGAM’s ‘smart’ spline 
fitting functionality, hence the use of the sm.ns() function instead 
of the more widely used ns() function from the splines package 
in R50. Likelihood ratio testing was performed with the VGAM 
lrtest() function, similar to Monocle’s other differential expres-
sion tests50. A significant branch-dependent gene is one that has 
distinct expression dynamics along each branch, with smoothed 
curves that have different shapes.

To fit the full model, each cell must be assigned to the appro-
priate branch, which is coded through the factor ‘Branch’ in the 
above model formula. Monocle’s function for testing branch 
dependence accepts an argument specifying which branches are 
to be compared. These arguments are specified using the ‘State’ 
attribute assigned by Monocle during trajectory reconstructions. 
For example, in our analysis of the Truetlein et al.25 data, Monocle 
reconstructed a trajectory with two branches (LAT1, LAT2 for AT1 
and AT2 lineages, respectively) and three states (SBP, SAT1 or SAT2 
for progenitor, AT1 or AT2 cells). The user specifies that he or 
she wants to compare LAT1 and LAT2 by providing SAT1 and SAT2 
as arguments to the function. Monocle then assigns all the cells 
with state SAT1 to branch LAT1 and similarly for the AT2 cells. 
However, the cells with SBP must be members of both branches, 
because they are on the path from each branch back to the root 
of the tree. In order to ensure the independence of data points 
required for the LRT as well as the robustness and stability of our 
algorithm, we implemented a strategy to partition the progenitor 
cells into two groups, with each branch receiving a group. The 
groups were computed by simply ranking the progenitor cells by 
pseudotime and assigning the odd-numbered cells to one group 
and the even numbered cells to the other. We assigned the first 
progenitor to both branches to ensure they start at the same time 
which is required for downstream spline fitting and clustering. 
The branch plots in Figure 3c show branch-specific spline curves 
fit by this method.

Branch time point detection. The branching time point for each 
gene can be quantified by fitting a separate spline curves for each 
branch from all the progenitor to each cell fate. To robustly detect 
the pseudotime point (tib ) when a gene i with a branching expres-
sion pattern starts to diverge between two cell fates L1, L2, we 
developed the branch time point detection algorithm. The algo-
rithm starts from the end of stretched pseudotime (pseudotime 
t = 100, see Supplementary Note 1) to calculate the divergence 
(Di(t = 100) = xL1(t = 100) − xL2(t = 100)) of the expression for 
gene i (xL1(t = 100), xL2(t = 100) between two cell fates, L1, L2, (for 
a branching gene, the divergence at this moment should be large 
if not the largest across pseudotime). It then moves backwards to 
find the latest intersection point between two fitted spline curves, 
which corresponds to the time when the gene starts to diverge 
between two branches. To add further flexibility, the algorithm 
moves forward to find the time point when the gene expression 
diverges up to a user controllable threshold (e), or D t ti( ) ( )≥ e , 
and defines this time point as the branch time point, tib , for that 
particular gene i.

Analysis of human skeletal muscle myoblasts. We used the 
human skeletal muscle myoblast (HSMM) data from our previ-
ous publication18 to benchmark the performance of developmen-
tal tree reconstruction and pseudotime differentially expressed  
gene test between relative abundance or census counts. Relative 
abundances are converted into transcript counts using Census 
with default parameters with parameter t* estimated from the 
relative abundance data for each cell. Potential contaminating 
fibroblast cells with transcript counts of Mef2c less than 5 and 
Myf5 less than 1 were removed which yields 142 cells for down-
stream analysis.

The union of genes that were differentially expressed between 
the four time points in relative abundance or recovered tran-
script counts scale were used to reduce dimension and order the 
cells. Transcript counts were variance-stabilized. The ordering 
of developmental trajectories between these two approaches was 
compared using Spearman correlation. Pseudotime tests were 
performed on both the relative abundance and transcript counts 
scale where the pseudotime-dependent genes were collected as 
those with q values less than 0.05 (Benjamini-Hochberg correc-
tion). The benchmark set was obtained from the permutation test 
based on a modified algorithm from the glm.perm package as 
previously described (see Supplementary Note 1, benchmarking 
differential expression analysis).

Differential splicing analysis was conducted by first converting 
isoform-level TPM values from Cufflinks to transcript counts 
using Census with default parameters. Each gene’s isoform-level 
transcript counts Z1, …, Zk were then modeled using a generalized 
linear model with a Dirichlet-multinomial response using the 
VGAM package (version 1.0-1). The Dirichlet-multinomial dis-
tribution is a compound distribution, where the probabilities that 
parameterize a multinomial are themselves drawn from a Dirichlet 
distribution with an additional over dispersion parameter φ. That 
is, the Dirichlet encodes the frequencies of the isoforms π and the 
variation in this frequency vector, while the multinomial captures 
the sampling of actual transcripts according to these frequencies. 
The Dirichlet has proven effective in previous analyses of splicing 
changes in bulk RNA-seq studies51.

To test for pseudotime-dependent shifts in the frequencies of 
the isoforms produced by each gene, we fit the following model 
to the observed isoform-level Census RNA counts: 

Dirmultinomial sm.ns Pseudotime( , , | , ) ~ ( )Z Zk1 … p f

Only isoforms with at least one copy detected in at least 15 cells 
were included in the model for each gene, to ensure numerical 
stability within VGAM. We then compared this full model to 
the null 

Dirmultinomial( , , | , ) ~Z Zk1 1… p f

by likelihood ratio test. Note that each gene’s φ was estimated by 
maximum likelihood separately, as we did not wish to assume that 
these dispersion parameters are a smooth function of expression 
level, as is commonly done in RNA-seq.

Analysis of preimplantation embryos. Allele-specific relative 
gene expression values (transcripts per million) were estimated 
by applying Kallisto46 to the raw reads of Deng et al.45. using an 
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allele-specific transcriptome index. This index consisted of cDNA 
sequences from GENCODE vM9, corresponding to the pater-
nal (C57BL/6J) alleles, plus the same sequences with maternal 
(CAST/EiJ) SNP alleles overlaid (CAST genotypes from Keane 
et al.52; only homozygous variants relative to the C57BL/6J refer-
ence were used).

The TPM values for the two alleles for each gene were con-
verted to allelic RNA counts using Census with default param-
eters. The number of RNA molecules from each allele of each gene 
were modeled using a quasibinomial GLM. The quasibinomial 
is a binomial that allows for over- (or under-) dispersion with 
respect to the binomial through a parameter φ. Its probability 
mass function is: 

P x k
n
k p p k p kk n k( ) ( ) ( )= =







+ − −− −f f1 1

where p encodes the probability that an RNA originated from the 
maternal allele (without loss of generality).

Quasibinomial GLMs were fit to each gene using VGAM, using 
the option “dispersion=0” to direct VGAM to estimate the dis-
persion parameter for each model from each gene’s maternal and 
paternal RNA counts Zm and Zp, respectively. To test for embryo 
stage-dependent allelic balance shifts in each gene, we fit a full 
model 

quasibinomial stage( , ) ~Z Zm p

and a null 

quasibinomial( , ) ~Z Zm p 1

to these data, and compared them using an F test29. As for isoform- 
level modeling, the dispersion parameter was fit separately for 
each gene. We note that the quasibinomial is similar to the beta-
binomial, the two category case of the Dirichlet multinomial. We 
explored the use of the beta-binomial for this analysis, and while 
we reached qualitatively similar conclusions regarding escape 
from X inactivation and monoallelic expression, we felt that the 
quasibinomial provided a better fit for the data.

Analysis of X-chromosome inactivation was performed on 
female embryos at the 4-cell, 16-cell and early blastocyst stages. 
Embryos were sexed by hierarchically clustering cells on the basis 
of variance stabilized transcript counts for genes on the Y chro-
mosome. Cells fell into two clearly defined clusters, only one of 
which expressed ‘informative’ Y-chromosome genes. Embryos 
comprised of these cells were annotated as male.

To quantify the number of genes escaping X-chromosome inac-
tivation at each stage, we used the quasibinomial GLMs to assess 
the probability that less than 10% of the RNA from a gene origi-
nated from the inactive chromosome. (10% is a widely accepted 
threshold for escape from X inactivation53,54). To do so, we con-
structed a 95% prediction interval on the allelic ratio for each 
gene by simulating random variates from its GLM via the VGAM 

package’s simulate.vlm(). That is, we calculated the number of 
simulated observations that were less than 10% percent maternal 
or paternal. Using this statistic, we calculated a significance score 
for contribution from the maternal and paternal alleles for each 
gene on the X chromosome, corrected these for multiple testing 
(via Benjamini-Hochberg), and reported the number of genes 
with significant maternal and paternal contributions.

We used a similar simulation-based procedure to construct pre-
diction intervals for expected monoallelic expression. After fit-
ting a quasibinomial GLM for each (autosomal) gene’s allele RNA 
counts, we simulated 100 random variates from each gene’s model 
and counted the number of times the model reported RNAs from 
only one of the two alleles. We then collected these counts into 
quantiles based on the gene’s expression level to generate 95% 
prediction intervals for monoallelic expression as a function of 
expression level. The exact same fitting, simulation, and predic-
tion interval estimation procedure was used for both RNA counts 
and estimated allelic read counts from Kallisto.

We provide a table that describes all variables used in Census 
(Supplementary Table 2a), BEAM (Supplementary Table 2b), 
isoform switch analysis (Supplementary Table 2c) and allele spe-
cific analysis (Supplementary Table 2d).

Code availability. A version of monocle 2 (version: 1.99) used 
in this study is provided as Supplementary Software. The 
newest Monocle 2 is available through Bioconductor as well as 
GitHub (https://github.com/cole-trapnell-lab/monocle-release). 
Supplementary Software also includes a helper package includ-
ing helper functions as well as all analysis code that can be used 
to reproduce all figures and data in this study.

Data availability. Eleven public sc RNA-seq data sets are used 
in this study, of which eight data sets used ERCC spike-in.  
Data sets with spike-in were lung: GSE52583 (ref. 25); noise 
model: GSE54695 (ref. 4); neuron reprogramming: GSE67310  
(ref. 15); human preimplantation embryos: E-MTAB-3929 (ref. 10);  
pancreas: E-MTAB-5061 (ref. 11); cortex: http://linnarssonlab.
org/cortex/ (ref. 12); marker-free: GSE54006 (ref. 13); and quan-
titative assessment data: GSE51254 (ref. 14). Data sets without 
spike-in were HSMM: GSE52529 (ref. 18); dendritic cell knock-
out: GSE41265 (ref. 36); and allele-specific gene expression: 
GSE45719 (ref. 45).
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